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Band renormalizationftects (BRE) are comprehensively studied for a mixed statkzgf-wave superconductingl{
SC) and antiferromagnetic (AF) orders, in addition to sintheC, AF, and normal (paramagnetic) states, by applying a
variational Monte Carlo method to a two-dimensional Hubb&ittt(J) model. In a weakly correlated regimé ft < 6),
BRE are negligible for all the states studied. As previously shown,fieeteve band ofl-SC is greatly renormalized but
the modifications of physical quantities, including energy improvement, are negligible. In contrast, BRE on the AF state
considerably fiects various features of the system. Because the energy is markedly improt/g¢t €00, the AF state
occupies almost the whole underdoped regime in phase diagrams. A doped metallic AF state undergoes a type of Lifshitz
transition att’ = t| ~ —-0.05t ast’/t varies, irrespective of the values df't ands (doping rate). Pocket Fermi surfaces
arise arounds, 0) [(7/2, 7/2)] for t' > t/ [t" <t/ ], which corresponds to the electron-hole asymmetry observed in angle-
resolved photoemission spectroscopy (ARPES) spectra. The coexistent state of the two orders is possible basically for
" > t/, because the existence of Fermi surfaces ne) {s a requisite for the electron scatteringiof (rr, 7). Actually,
the coexistent state appears mainlyffoit < t'/t < 0.2 in the mixed state. Nevertheless, the AF and coexisting states
become unstable toward phase separatior-005 < t'/t < 0.2 but become stable at other valueg’df owing to the
energy reduction by the diagonal hopping of doped holes. We show that this instability does not directly correlate with
the strength ofl-SC.

1. Introduction and variational Monte Carlo (VMC) methdd33-2%are use-

To clarify the physics of cuprate superconductors (S&), ful tools to quantitatively treat strong local correlations. One
we have to know the fundamental properties of thkand also needs to consider thfexts of antiferromagnetism (AF)
Hubbard models on a square lattice with an extension in tiR¢cause it is crucial even for subject (C). The results regard-
kinetic part (-t andt-t'-t”, etc.) as basic mode®In this pa- INg (A)-(C) of the above studies do not seem unified but are
per, we mainly focus on the following subjects in the Hubbarégther scattered at first glance. Although inconsistencies ex-
(t-t'-U) model: ist among them, we feel that the main source of confusion

(A) The primary subject is the ground-state phase diagraFﬁSideS in insﬁicient consideration of the filerence .in the
in the model-parameter space. Although a typical view to dai@gonal hopping ternt). In most of the above studies/t
is that the antiferromagnetic (AF) order arising at half fill-(@ndt”/t) was set to specific values, say 0 z1d-0.3, but
ing rapidly vanishes upon doping holes and the ,o-wave we are apt to read the results associated with (A)-(C) \_NI'FhOUt
superconductivity-SC) appear;? in accordance with the care inthe value of /t. If we arrange the results by specifying
behavior of cuprates, in recent studies using advanced tedR€ value oft’/t, they are often consistent beyond our expec-
niques it was argued that AF orders or inhomogeneous phad@ion. as shown later in Table IV for some results obtained by
prevail in wider ranges of (doping ratef~") the VMC method. This also applies to many results of DMFT.

(B) In phase diagrams of cuprates, the areas of supercd:rf-om this point of view, the results of recent studies with high
ducting (SC) and AF phases are in proximity. In the SC phasgccuracy " are consistent. In fact, a small number of stud-
appreciable AF correlation or short-range AF orders are offtS have considered thefiirence in the features of (A)-(C)
served®) but the coexistence of two long-range orders has ng€tween the cases 6t = 0 and other cases, although they
been detected except for in multilayered systems. In theody/ere not stiiciently elaborate or analytit! 620
it is still unclear in what parameter range the two long-range 10 Study (A)-(C) in an ordinary VMC framework, one has
orders coexist and why they are coexisting or mutually excl© use a mixed state that represents the AF and SC orders si-
sive. multaneously. The properties associated with (B) have been

(C) Another subiject is whether or not homogeneous stat8&idied for thet-J-type*= and Hubbaréf - models. In
are stable against phase separation. Actually, signs of inhonfsidition, it is crucial to take account of théfects of band
geneous electronic states or phase separation are often notig@prmalization (BR) owing to strong correlations in the one-
in cuprates such as a stripe structure of charge and spin anBogly part of the wave function. To date, band renormalization
mosaic distribution of the gap magnitude. Theoretically, it i§ffects (BRE) have been introduced irde5C state$ > or
again unclear as to the rangedLbft, ' /t, ands and the cause thed-SC part of mixed state’s: 19.20.26,27Because BRE were
of the state becoming unstable toward phase separation. disregarded in the AF part in these studies, an AF order does

So far, these subjects have been addressed by many et arise fort’/t ~ ~0.3, or it vanishes rapidly upon dop-
searchers with a variety of methods, in particular, dynaming for t'/t ~ 0. Such features are inconsistent with recent

cal mean field theories (DMFTs) with some extensfoh®12  researctt=") Unexpectedly, BRE have not been introduced
into normal (paramagnetic) and AF states and the AF part of
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Table I. Elements modified by band renormalization in one-body part for
finite systems (indicated by circles). The two elements mergk for co.

(a) H (b) b Y Modified elements Oy Dy DPar DPmix
{k}occ Or Fermi surface @) = @) O
Direct modification ofey - O O O
[ ¢ ° [ )
In this work, the hopping integra} is t for nearest neighbors
' t ‘ ¢ ¢ (= 0),t" for diagonal neighbors, and 0 otherwigé, = H;+

Hy) [Fig. 1(a)]. The bare energy dispersion becomes
Fig. 1. (a) Hopping processes in Hamiltonian [Egs. (1) and (2)] and (b) & =2 (COSkX + COSkV) — 4" cosky cosky. (2)
those_ corresponding to band—adjugting parameg_e(p;a: 1-4) in trial wave A g \we will see, the diagonal hopping ter, plays a crucial
functions [Egs. (13)-(17)]. In both figureis the unit. role in the present theme. We usand the lattice spacing as
the units of energy and length, respectively.

mixed state$®) probably because optimization is technically, . .
X : .~ 72.2  Trial wave functions
bothersome, as mentioned in Sect. 2.3 and the Appendices. B int th is 1 th ¢ f BRE
In this paper, we study ground-state properties of the Hub- ecause our interest nere 1S 1o grasp the nature o

bard ¢--U) model by applying a VMC method with BRE of rather than obtain accurate numerical values, we employ
up to fifth-neighbor hopping to a mixed stagy in addition forms of trla_l functions the_lt capture the essence of physics
to normal (paramagnetic), puteSC, and pure AF states. In but are as simple as possible. As many—body trial states, we
Wmix, We renormalize the energy dispersie§ ands," in- use a Jastrow typd; = PCD,_whereSD ISa two-body_correla—
dependently. This parametrization is a key to finding corredion factor (projector) ane is a one-body (mean-field-type)
features of a mixed state. The present results are quantitativt\é\f ve function. We use a S'”?p'e form#Bicommon tq all trial
consistent with those in recent reseafch As the merits of SAeS? = PcPo, wherePe is the weII-kn?())z\;vn onsite Gutz-
the present study, we stress the following points: (a) We sy@’-IIIer projectorf’s = [1;[1 - (1 - gnjn,]™ andPq is the

_nei - - indi §3:34)
tematically study the dependence on the model parameters!ﬁll‘?larest neighbor doublon-holon (D-H) binding factd?,
[1 - {qd; l_[ (1 - hj+‘r) — {hh; l_[ (1 - dj+‘r) ,

particulart’/t ands. (b) We clarify the physics underlying the

properties of ik (or the Hubbard model) by comparing var- 7 Q = l_[

ious levels of wave functions. Through these merits, we will ] 3)
7 This paper 1 organized as folows. I Sect. 2, we explaffereeh = M. = (1)L~ 1), andr runs over he
pap 9 ' o P nearest-neighbor sites of siteAs shown beforé® 36 the D-

the model and method used in this study. In Sect. 3, we d'SCLﬁ%inding afectincluded i is crucial for properly treating

the results of BRE on thé-SC state. In Sect. 4, the results of ) . L
BRE on the normal (or paramagnetic) state are presented 'er? tt physics. The p_rolec_toP has t_hree variational parame-
ters,g, Zq, andZy, which trigger BR ind.

Sect. 5, we consider the BRE on an AF state, referring to theWe trn to the one-body pa, which is the main point

Lifshitz transition arising at’' /t ~ —0.05. In Sect. 6, we study : :
BRE on a mixed state a-SC and AF orders, and discussfor BRE. We start with the _normal (pgramagnetm) stat_e. Let
{k}occ denote the set df points occupied by electrons ib

prerequisites for the appearance8C. In Sect. 7, we re- yith & < ey, (or symbolicallyk € k). Then, the one-body
capitulate the main results and make additional comments. In . . ;

. . . normal state we use (a Fermi sea) is written as
Appendices A and B, details of the calculations and analyses
of the normal and AF states are described, respectively. The Dy = H Cl ,10). 4)
preliminary results referred to in this paper were presented in Klooer
three preceding publicatiod&:3?

If {K}occ is determined in accordance with the bare band dis-
persiongg in Eq. (2), @y is the exact ground state @{ for
. . . . U = 0. When the interaction is introduceg, will be modified
After introducing the model in Sect. 2.1, in Sect. 2.2 Weby its self-energy. In the framework of many-body variation

describe the setup of trial wave functions, which is the Corﬁleory &« should be optimized along with the other parame-

of varlatlop theory. In .Sect. 2.3, we comment on a metho&lrS so as to reduce the total enefgy: ()/Ns (Ns: number
qf computing expectation values with the present wave fungy sites). Note that iy [Eq. (4)], s does not explicitly ap-
tions. pear but has thefiect of determiningk }occ OF the Fermi sur-
face (see Table | for comparison). Namely, the operation of
2.1 Hubbard model _ BR for @y, is simply reduced to the choice t}occ. To obtain
With cuprate SCs in mlnd, yve c_on5|der the Hubbard model,| BRE, we need to find thék }occ that yields the lowesE/t
(U > 0) on a square lattice with diagonal hopping: among all thék }oce, but the number of choices @}occ grows
H = Hn+Hy exponentially [roughly ag_;4Cn;s (N: number of electrons)]
+ as the system size grows. In this work, we optintEzéwithin
= - Z tij (cmc,-(, + H-C-) +U Z NitNj. (1) the{k)oecthat are generated by a tight-binding formegfwith
0 J diagonal transfer:
wherecj, annihilates an electron of spin at site j, nj, =
CJT(TCJ-O_, and (, j) indicates the sum of pairs on siteand j.

2. Formulation

aN = -2t (coskX + cosky) — 4t; cosk, cosk,, (5)
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wheret; is varied. This form oy has often been used fdr  of ¢(k) is also modified byk}oc. determined by;’ljF, as sum-
SC states in previous studfés*® and also seems reasonablemarized in Table I.
as a first setting fody. Details of optimizing¥y = POy are A pure one-body AF stat®ar is given by theAg — 0 limit
described in Appendix A. The ordered stateg ®ar, and of Oy as
®pix introduced below are reduced dgy in the limit of Aar
andor Ay — 0.

We move on to the mixed state of AF ade5C orders of a
fixed electron numbemyix. This state is written as@wave Where the AF quasiparticles are given by Egs. (9) and (10)

BCS state Composed of AF quasipartidé)s: and {k}OCC is determined b)bﬁ': in Eq (12) There are five
variational parametersl;,;’(F » App) In @pp. A pured,._»-wave

Opr = 1_[ al,g|0>, (18)

{Kloce: o

N

o ek singlet pairing (BCS) state of a fixed electron nuniBeis
Drix = [Zk: ¢(k) akTa—kL] 10), 6) given by theAar — 0 limit of @i as
with :
Ax Oy = Z ¢(k) ClTCikiJ 10, (19)
¢(k) = : (7) k
g0~ J(°— )2 + A with ¢(k) given by Eq. (7). There are six variational parame-

SC i
Here,u is a variational parameter, which is reduced to th('E:xerS " Ag, ) in Pg.

chemical potential foJ/t — 0, and ad,._.-wave gap is as-

2.3 \Variational Monte Carlo calculations
sumed as

In general, it is impossible to accurately calculate varia-
Ay = Ag(cosky — cosky), (8) tional expectation values of a many-body wave function,
with Ay being ad-wave pairing gap parameter. As the AI:with O being an operator., by analytical means. Instead, in
quasiparticles in Eg. (6), we employ a form of an AF Hartreel'any Cases, the ex_pectanon values 032) be accurately numer-
Fock solution at half filling with’ /t = 0: ically estimated using VMC method®:4? Recently, many

parameters (up to more than®dn (H) have been fé-

al, = acl, +sgng) ﬂkCLQJ, (9) ciently optimized by newly introduced algorithrfi.In the
s : + present cases, however, we cannot adopt ordinary optimiza-
800 = ~SINE) BkC ;T AkC,q (10)  tion schemes using derivatives of energy becatg)) is
whereQ is the AF nesting vectorr( ), sgng) = 1 (1) for  constant¥n) or nearly constant{ar and¥mix) as a function
o =7(), and of the band parameters;o in the parameter s¢¢} and has ir-
regularly distributed discontinuities. To address BR'jp we
ax (B = 1 1-(+) E (11) combine a VMC method with the extrapolation scheme de-
k Wk \2 (EAF)Z + A2 ) scribed in Appendix A. FoWar and¥p,ix, We repeat a prim-
K AF itive linear optimization method in this study until optimiza-
Here,Aar corresponds to the AF gap parameter in the sensen becomes successful, although better ways are applicable.
of mean-field theory. Details are described in Appendix B. P#f, ordinary opti-

To introduce BRE intadn,x, we extend the band disper- mization algorithms are applicable uni@gsapproaches zero.
sions &7 in Eq. (7) ande, ™ in Eq. (11) independently by ForAq ~ 0, a dificulty similar to that fola manifests itself.
including tight-binding hopping terms up to three-step pro- We calculate physical quantities using more th&w210°
cesses shown in Fig. 1(b), samples. The accuracy of the total energy of“1Gs pre-

A A A A A served, similarly to in previous studies. Itis laborious to accu-
g = v+ er (k) + &5 (k) + £5.(K) + 24 (k). (12) rately converge\ar (or Aq) and the band parameters to spe-
with A = SC or AF and cific values because there is redundancy among these param-
eters. However, thisfBects the calculations of physical quan-
Vi = ~2i(cosky + cosky), (13) tities only slightly in most cases.
£ (K) = —4t} cosky cosky, (14) We use systems dis = L x L sites withL = 10-18 under
A A periodic-antiperiodic boundary conditions. The closed-shell
£2(K) = —2t (Cos & + cos Xy), (15) condition is not satisfied because we allfiyocc to be op-
£ (K) = —4t5 (cos Xy cosky + cosky cos X;), (16) timized automatically, although the total momentum is pre-
A A served at zero. In this paper, we often consider rough system-
£4(K) = =25 (c0s X + cos ). (17) " size dependence for~ 0.08 usingL = 10, 12, 14, 16, and
Here, the eight band-adjusting paramet@r/st (A = SCor 18 withN = 92, 132, 180, 236, and 296 & 0.08, 0.0833,
AF, n = 1-4) are independent ¢f/t in H and are optimized 0.0816, 0.0781, and 0.0864), respectively.
along with the other variational parametegs d4, ¢h, Ad, K, .
Aar). Note that thek points used in Egs. (9) and (10) belong3: BRE on Pured-Wave Pairing State
to {K}occ determined by™ (notyx).3") As aresult, iffk focc in- In this section, we discuss BRE on the pdravave pairing
cludesk points outside the folded AF Brillouin zong(k) for  state without an AF ordely = P®y. In Sect. 3.1, we con-
the corresponding in the sum in Eq. (6) is doubled, aggk) firm that there is a large BRE Mg, as found in previous stud-
for k (¢ k) inside the AF Brillouin zone becomes null. Inies?-29In Sect. 3.2, however, we show that the improvement
Dmix, £5° andef™ are explicitly renormalized, and the weightin energy is unexpectedly small. In Sect. 3.3, we also find that

3
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Fig. 2. (Color online) Optimized band parameters {aand (b)t, of d-

Table Il. Rough estimate of cdicients in fitting function Eq. (20) for
U/t = 12 estimated from data fdr = 10-14.

6 00 004 ~008 012 o016

ay | 014 041 055 025 005

a- | 014 041 067 090 095

In Fig. 2(a), we show the optimized valuestgft as func-
tions of U/t, fixing the model parameter #t/t = —0.3. For
U/t < 5,t; preserves the bare valtie~ t’ irrespective ob;
no substantial BR exists. This is becauggeis very small in
this range olU/t and the state is reduced to the normal state,
as in the cases without BRE® ¥y also shows no substan-
tial BR in this range ofJ/t as shown in Sect. 4. The relatively
large statistical fluctuation in the case&f ~ 0 stems from
the same diiculty as inWy in optimizing the band parame-
ters [see Appendix A]. On the other handLat U, ~ 6.5t36)
(Uc/t: Mott transition point in¥y), t;/t abruptly increases, in
particular,t; /t approaches 0 &t = 0. As previously pointed
out*2Y this BR of ¥4 occurs so that the quasi-Fermi sur-
face overlaps with or approaches antinodal pointdJ), etc.],
where the van Hove singularity exists fitf/t| < 0.5 and the
d-wave gap becomes maximum. Furthermore, the elastic elec-
tron scattering of] = Q connects these points with opposite
signs ofAq4. Restoration of the nesting condition, which is the
principal cause of BRE for the AF state, seems a subordinate
aspect folP'y. As ¢ increasest; slowly approaches the value
of t’ for the same reason (see Fig. 3). In contrad to the
optimizedt,/t remains almost zero (the bare value) forlat
ands for t'/t = —0.3, as shown in Fig. 2(b).

Next, we consider th&/t dependence df /t andt,/t for

wave singlet pairing state (BR2) as functiondbf for several doping rates. U > U.. We find that the optimizet} /t is roughly fitted by
In (a), the area wher®y is reduced to¥y is shown by an arrow labeled separate linear functions f/t for the hole- and electron-

‘Normal'. In (b), the Mott transition point at half filling is indicated by a gray

arrow.

- U /t=12

- d-wave (BR2)

T
t/t=

' |
0.3 0.0—03 L
- ---0-----0--- 10
—A——A——2— 12 ,
—-B——R——m-14 J ./'

0 0.1

Fig. 3.

(Color online) Optimized values of/t for thed-wave pairing state

(BR2) plotted as functions of doping rate for three valuet ffin the regime

of a doped Mott insulatoi{/t = 12).

doped cases:

th/t = . (6) X U/t (20)

wherea, (6) [a_(6)] is the codficient fort’/t > 0 [t'/t < O]
at a fixeds. If t, (n > 2) is indfective (this is actually the
case, as reported shortly), BRE are nonexistentfor= 1
and, inversely,sfC is renormalized to the case tif = O for
a: = 0. The values ofr. depend orJ/t only slightly and
are shown fotJ/t = 12 in Table II. Although the magnitudes
of BR exhibit opposite tendencies betweenanda_ for 6 >
0.08,a. is always positive. As a result of this positiveness, the
convexity '/t > 0) or concavity {'/t < 0) of the bare Fermi
surface nearn(/2, ©/2) is preserved in the renormalized quasi-
Fermi surface of7C. As a result, the locus of a hot spot —the
intersection of a (quasi-) Fermi surface and the AF Brillouin
zone boundary, where scatteringp# (7, ) takes place-44)
is near f,0) fort’/t < 0 but approachest(2,7/2) to some
extent fort’/t > 0.2445.46)As we will see in Sect. 6.2, the loci
of hot spots can be used to give a condition that a coexistent
state arises.

In contrast tot; /t, t/t is again found to be almost zero
for anyt’/t andé. The dfect ofts andt, is considered iy
with four band parametets—t, in g [EQ. (12)] (BR4). The

the modification of relevant physical quantities is negligible.behavior oft;/t andtz/t for BR4 is basically similar to that

3.1 Large BRE for (doped) Mott insulators

First, we attempted to optimi2#y only with two band pa-
rameterd; andt, by puttingts = t4 = 0 for simplicity. We
abbreviate this two-band-parameter optimization to BR2.

for BR2 mentioned above. We found that both the optimized
t3 andt, have small positive valuegs(t < 0.11,t4/t < 0.095,
with the largest values at half filling) almost independent of
t’/t. These values decrease@mcreases and almost vanish
for 6 > 0.1. As we will see in Sect. 3.2, théfects oft; andt,
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0.004 . — , ; , . , .
L (a) L=10 12 14 & —E4(BR2) t/t=0 -0.3 L
' --o--—0—-0-- 0.0 d-wave -—0-—-—5-10
| | —a— 0.04 ———=—12 -
0.003 | ~-B--—8—  ~008 U/t=12 . o—-m-14 ]
— H —— 0.12 =
E ! —— 0.16 0
N 0.002 E N
! 0.

0.001

0'008@\' o L Fig. 5. (Color online) Energy improvement [Eq. (21)] owing to BRE for

the d-wave pairing state (BR2) plotted as functions of doping rate for two
values oft’/t in a strongly correlated regim&J(t = 12). Broad statistical

0.006 E errors are indicated by bars for some data points.
w 0.004 .
N E Table Ill. Examples of total energy per site shown for a specific case
! (t'/t = -0.3,U/t = 12,L = 10) for comparison among four states with
0.002 | different BR levels and three doping rates. The brackets denote errors in the
A last digits.
0 State Condition E/t
of e §=0.0 0.04 0.08
Normal | noBR -0.1855(2) -0.3230(2) -0.4259(2)
BR -0.2660(1) -0.3360(2) -0.4310(1)
d-wave | noBR -0.3222(2) -0.3816(4) -0.4602(2)
BR2 -0.3235(2) -0.3827(1) -0.4606(3)
Fig. 4. (Color online) Energy improvement [Eq. (21)] owing to BRE for BR4 -0.3241(2) -0.3828(4) -0.4606(10)
the d-wave pairing state (BR2) shown for some valuessandL, (a) as AF no BR -0.1879(2) -0.3288(2) -0.4259(2)
functions of correlation strength with/t = —0.3 and (b) as functions df/t BR4 —-0.35319(2) -0.4201(3) -0.4881(1)
with U/t = 12. The Mott transition point at half filling is indicated by a thick Mixed BR 4+4 -0.3559(2) -0.4211(2) -0.4915(2)

gray arrow in (a). In (b), plausible areastoft for hole-dopedf{(/t < 0) and
electron-dopedt{/t > 0) cuprates are indicated with gray arrows. ) .
AE/t, which again corresponds to the degree of BRE;¢h

shown in Fig. 3.
We have shown that the energy is basically improved ac-

cording to the degree of BRE dyyt for every model parame-
U, 6 ~ 0 ter. Nevertheless, what is important here is that the magnitude
of AE/t is unexpectedly small. The precision (statistical er-
ror) of the energy in the present VMC calculations Wy is
on the order of 16* as shown by bars in Fig. 5, while the
maximum value oAE/t is only ~ 1073t (only slightly larger
than the errors). In Table IIE/t for ¥4 is compared among
the cases of without BR, BR2, and BR4 for typical model pa-

3.2 Slight improvement in energy by BRE
rameters. We also find that theffdirence between BR2 and

Here and in some later sections, we consider the i |mprov§}M is very small. Furthermore, theffdirence it is an or
ment in the total ener er site owing to BRE, represente ' . ' d )
gy p g P er (two orders) of magnitude smaller than thatiq (War)

as for all the above values @ This difference is later illustrated
AE = Ex — EA(BR), (A=d,N,orAF)  (21) inFig.11.

whereEq [Eq(BR)] is the energy off without [with] BRE; 3.3 Small modification of quantities by BRE

AE/t > 0 holds except for statistical errors. In Fig. 4(a), the ™™ ) . . .
U/t dependence aAE/t is shown for some values offor First, we consider d-wave pairing correlation function,
Z (D) (ALR)A (R + 1)), (22)

t'/t = -0.3. The regime of finiteAE/t for U > U, cor- p

responds to that of the finite BR 6f/t shown in Fig. 2(a). a(r) = Ne Z A

As § increases, both the magnitude of BR axi/t decrease borre

and almost vanish in the overdoped regimiex( 0.15). Fig- WhereX (y) denotes the lattice vector in the(y) direction,
ure 4(b) shows the/t dependence ohE/t for U/t = 12, d(r.7’) is the Kronecker delta, antf}(R;) is the creation op-
which mostly corresponds to the degree of BRygf given €erator of a nearest-neighbor singlet pair at Bite

by Eq. (20) witha.. in Table Il. The exception far /t > 0 and D,

large s is caused by the vanishing of hot spots, which BRE A(Ri) = (C'TC'“l W/ V2 (23)
alone cannot control. Shown in Fig. 5 is thelependence of

on energy and other quantities are also slight.

To summarize, BRE oWy are large ford >
and larggt’/t|. If these conditions are satisfied, th@eetive
band tends to the bare band of a square latéige—6 yx or
[t/t] — 0). This feature of BRE on thd-wave pairing state
has already been pointed out in previous stuéfes)

I+TT Il

5
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0.03 : : , : , . 8 ' ' ' ' '
@ A ) | d-wave 1
| —O— 10 (r.D BR PQ') ] t / t—*03
0=00 —4-12 (no BR PQ:) 6l 5=0
t'/t=—0.3 ~5-14 (o BR Pg) —
0.02}- 10 (no BR) 1 (@) I no BR BR L
12 (no BR) ~= —-A--—A— 10 N
e | 314 (0 BR) ‘{? o-—e—12 o~0.08
; —e—10 (BR2) (e}
i —A—12 (BR2
0.011 | Qg 7
i b —-x—-10 (BR4)
0 - I s
4 1U ¢ 10
urt 'Y
—T —T—
0.02k (b) ! ] Fig. 7. (Color online) Spin structure factor & = (r,7) measured from
i the bare U = 0) valueSp(Q) (= 1) compared between BR2 and no-BR cases
AW,AAAA—A~A.AﬂA—AJAA<A;A for 5 = 0 and~ 0.08 fort’/t = —0.3 as functions ofJ/t. A few cases with
| 13 2 different values of. are shown. The Mott transition point at half filling are
8 5 i indicated by a thick gray arrow. Near the horizontal axis, the areas where
o L : thed-wave correlation functio®y’ becomes sizable are indicated by dashed
~-4--12 (o BR, Pg) i arrows fors = 0 (blue) and~ 0.08 (green). See Fig. 6 for= 0.
0.01} —o—10 (o BR) i E
12 (o BR) i
|
| —*—10 (BR2) :
12 (BRY) i 5~0.08
--x--10 (BR4) : U/t=12
o— v 0.8
-0.5 0 0.5
t/t
Fig. 6. (Color online) Behavior of the-wave SC correlation functions in 0.6

Y4 compared between BR cases and no-BR cases (a) at half filling /ard
—0.3 as functions ofJ/t and (b) fors ~ 0.08 andU/t = 12 as a function of
t’/t. On the horizontal axis in (a), the Mott transition point is indicated by a
thick gray arrow. The data for “no BRb" are adopted from Ref. 4, in which

a slightly diterent D-H factor is used.

n(k)

04

t'/t=—0.30
0=0.0278
u/t=12
L=12

02 L

If Py(r) remains finite forlr] — oo (P7), a d-wave dif- r X M r
diagonal long-range order exist8; roughly represents the (0,0) (mo)  k (Ttm) (0,0)
square of the SC gap. Fdfy, we estimatePy in the same

way as discussed in Appendix C in Ref. 4. As an example, in

; 0o 11H Fig. 8. (Color online) Comparison of momentum distribution function of
Fig. we showP half filling for some levels of BR
9 G(a)’ € Shows, at ha g for some Ievels o d-wave pairing state (red and brown) among various levels of BR fas)d

(and#®) for L = 10-14. As discussed in Ref. B} is negligi- i, e regime of doped Mott insulatorbl(t = 12) along the path (@) —
ble for small values ofJ/t. As U/t increasesPy abruptly (r,0) - (r.n) — (0,0). The Fermi surface in the nodal-M) direction is
increases at/t ~ 5, exhibits a sharp peak near the Mottindicated by an arrow labeldgt. For comparison, we adu(k) for the normal
transition pointUc/t ~ 6.5, and vanishes in the Mott insu- state (blue) with and without BRE as discussed in Sect. 4.

lator regimeU > Uc. Although the peak value d?y tends

to be slightly decreased by BRE, the behavior does not vary

as a whole. Fos > 0, the area wher@y’ is sizable extends

to large values ofJ/t, but the modification oy by BRE is necessary for an increaseRfj because the electron scat-
remains small (not shown). The modification B is also tering of Q yields an attractive force for pairing. Anyway, the
small whert’/t is varied, as shown in Fig. 6(b). Furthermore modification ofS(Q) by BRE is also small and only quantita-

the diference between BR2 and BR4 is negligible. tive even at half filling.
Next, we consider thg = Q element of the spin structure  Finally, we discuss the momentum distribution function
factor ) 1 Z . 25)
1 i0-(R:—R: n = E <Cko.cka—>~ 25
@)= > daRRI (757, (24) 7

i It seems thah(k) sensitively reflects the variation of the ef-
TheU/t dependence &8(Q) is shown in Fig. 7 fos = 0 and fective bandey, which is considerably renormalized depend-
~ 0.08. As previous studies pointed out, an increas8(i@) ing on the case. Figure 8 depicif) in such cases with red
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(without BRE) and brown (with BRE) symbols fo¥y and

blue symbols for the normal stafié, (see Sect. 4). In accor-

dance with the above expectation, the locukpf{disconti-

nuity) near the X point in¥y is shifted to a neighbdk point

by BRE. Nevertheless, iy, the modification by BRE isvery +

small for the gap behavior in the antinodal area-) as well L

as for the discontinuity in the nodal directidn § (7/2, 7/2)],

despite the large BRE;(/t ~ —0.05 fort’/t = —0.3 in Fig. 3).

This is probably because the choice{kfoc, which is con-

trolled by g¢ in Wy andWag, is unnecessary ¥4 as shown -0.43

in Table I. -0.36
In summary, the BR o€ itself is large {1/t — 0) for

U > U, largelt’/t], ands ~ 0, as previous studies elucidated.

Notwithstanding, BRE on relevant quantities as well as on the

-0.41F

-0.42}

energy in¥4 are very small and insignificant compared with .

-0.37

those on the normal and AF states discussed below. E
4. BRE on Normal (Paramagnetic) State A
In this section, we discuss BRE on the normal or paramag- -0.38 Wo\ptim BR
netic state (projected Fermi sea), i
| | |
Yy = POy = P 1—[ Cl 0|0>' (26) -0.4 -0.3 -0.2 -0.1 0
’ t'/t

{Kocchor

We cannot apply ordinary optimization procedure¥fpthat

use the gradients dE/t with respect to band parameters beFig. 9. (Color online) Total energy d#'y at half filling compared between
causeE/t for Wy with a finite N is constant in a certain area the cases of (a)/t = 7.0 and (b) 7 as a function ot’/t. Solid circles

of the band-parameter space. Hence, we must resort to a
ferent way of optimizingVy, which is described in Appendix

A. Here, we focus on the features of the optimiXggd

licateE/t without BRE, namely; = t’. A, (¢: integer) indicates the area of
t corresponding t¢k,}occ. The optimized energy owing to BRE is given by
the lowest value among all extrapolated lines. F#¢r= —0.3, the optimized

value ofE/t is indicated by an arrow in each panel. A detailed explanation of

Before discussing BRE, we briefly review some aspects dfe optimization is given in Appendix A.

¥\ without BRE ¢, = t').#39 At half filling, a Mott transi-
tion occurs atJ./t ~ 85 fort’/t = 0; U/t increases a' /1|

increasesU¢/t ~ 112 for |t'/t| = 0.3. Although the Mott
transition does not exist f@r > 0, the nature o'y markedly

[Eqg. (21)] fort’/t = —0.3 as a function olJ/t. At half fill-

changes al ~ Uc. ForU 2 U, ¥y does not behave as aing, asU/t increasesAE/t abruptly increases &t/t ~ 7 ow-
simple metal but takes on a typical feature of Mott physicing to the reason mentioned above, approximatelxBg =

(D-H binding dfect), behaving as a doped Mott insulator.
Now, we consider BRE. Because BRE areflioéent or

weak fort’/t ~ 0, similarly to the case oty, we first con-

sider the moderate casét = —0.3. We start with half-filled

aexpEpt/U) with @ andB being positive constants. Then,
AE/t exhibits a peak dt)/t ~ 11, which corresponds td/t

for the case without BRE, then slowly decreases (proportion-
ally to t/U for U/t — ). As the doping rate increases from

cases. Similarly to in?y, the energy reduction by BRE is § = 0, the overall behavior of th&J/t dependence is pre-

zero or very small folU/t < 6, even if the optimized;
(to be precise, the area including somewhat shifts from
t’ (the area including’). As shown in Fig. 9 folL = 14, the
optimized energy indicated by an arrow is given {tg}occ
(Az = [-0.27,-0.19]) for U/t = 7.0, while it is given by
{Ko}occ (Ao = [-0.1250.125]) for U/t = 7.5. Namely, the
optimized band parametér rapidly varies from~ t’ (€ Agz)
to ~ 0 (e Ap) betweenU/t = 7.0 and 75 in this case, and
the nesting condition is restored. Rdyt > 7, the optimized
{k}occ remains equal tdko}occ, OF the optimized value af /t
remains approximately QL:K = k). Also the renormalized

served but the magnitude rapidly decreases. For all the doping
rates shownAE/t is negligible for a weakly correlated regime
(U/t < 7), meaning that appreciable BRE are also a character-
istic of strong correlation for the normal state. In Fig. 10(b),
thet’/t dependence’(/t < 0) of AE/t is shown in the regime
of Mott physics U/t = 12) for some doping rates. The BRE
are largest at’/t| ~ 0.3-0.4 and small fort’/t| ~ 0.

We turn to the doping dependence &E/t. Shown in
Fig. 11 isAE/t for U/t = 12 andt’/t = -0.3; these values
are marked with vertical gray lines in Fig. 10. Asncreases,
AE/t rapidly decreases as

state becomes identical to the normal state without BR of the
simple square lattice, whose behavior is reviewed a®ve. A/t oc a exp(-6/on), @7)
Owing to BRE, the Mott transition point fdf/t = —0.3 shifts  with §y ~ 0.022 (@ : positive constant) in this case, as shown
from Uc/t ~ 112 to ~ 85. In fact, the optimal energy at with a thick dash-dotted line in Fig. 11. Thus, BRE almost
U/t = 85 for|t'/t| < 0.5 (L = 12) is given by{ko}oce thus, completely vanishes faf > 0.1. However, it should be em-
if BRE are introduced, the properties of the Mott transitionphasized thaAE for Wy is much larger than that foPy4 near
and Mott insulators fojt’ /t| < 0.5 are reduced to those for the half filling, as shown in Fig. 11, and the BRE 8fy are never
simple square-lattice casé € 0) without BRE. negligible.

In Fig. 10(a), we show the energy reduction owing to BRE Finally, we analyzeAE by dividing it into three compo-

7
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0.1 . — , . ,
L (3 o =14 12 10 9 | nents:AE = AE; + AEy + AEy. We find thatAE; is positive
@ N e 0.0 db I for a lartygt|, while AEy i ti d
0.08k- Normal 0904 N 0.0278 gn ecc.)mes.arge (_)ra arfge't|, while AEy is nega ive aq
t/t=-03 by —a 0.04 its magnitude is relatively small. Namely, thetive band is
- ' ! ---a---~0.08 transformed so as to gain kinetic enefgyat the cost of the
~— 0.061- } interaction energ¥y . This corresponds to a general tendency
'% } S i for a state in a strongly correlated regime to undergo a tran-
0.04L § S sition to reduce the kinetic energy3® This feature applies
d to War and ¥pix. For AEy, the magnitude is small as com-
- pared with those of the other two components, except when
0.021- '/t ~ -0.1.
L 5. BRE on Pure Antiferromagnetic State
In this section, we consider the features of BRE on the AF
0l———TT—T— T state without a SC order,
[ o oo} Norma (b) 1 War = PO, (28)
0.08F8-% i - - . .
U/t=12 In Sect. 5.1, we discuss the optimized parameters. In Sect. 5.2,
j| wodd 1 a large improvement in energy due to BRE is revealed. In
~ 006 =16 14 12 10 5 . Sect. 5.3, topics associated with the Lifshitz transition are
~ ——--0-- —8— —0— (0 | . . . H H H
W D 00278 considered. Details of the optimization ¥+ are given in
N 0.04 —— 0.04 i Appendix B.
5.1 Optimized band parameters
0.02 T We start by clarifying the features of the optimized band pa-
) rameters inPar, for which we always usg, (7 = 1-4) (BR4).
e hC-n—do-ni 2 o » In Fig. 12, theU/t dependence of the optimized valuetpfs

. shown fort’/t = —0.3. For a smallJ/t (< Uag/t ~ 2.75-35
t/t for t'/t = —0.3), no AF order exists an®xr is reduced to
Fig. 10. (Color online) Energy improvement [Eq. (21)] owing to BRE for ¥. At U = Uar (AF transition point) Aar and the sublattice

the normal state shown for some doping rates and values(aj as functions  magnetization (AF order parameter)
of correlation strength wittf /t = —0.3, and (b) as a function ¢f/t (< 0) with

U/t = 12. In (a), the Mott transition points at half filling are indicated by thick m= 3 Z |é'Q.rj <S;>
NS A J
I

(29)

arrows (brown for BR case, gray for no-BR case). Guide lines proportional
to t/U are added (dashed lines). In (b), data for eddre well fitted by

AE/t = —(a/X) expB/x) + yx with x = t'/t anda, 8, andy being positive  suddenly become finite (not shown), probably as a result of a
constants, as shown with gray dashed lines. first-order transition, fot’/t # 0. ForU > Uar, marked BRE
appears antj, becomes almost constant as a functiotugf.
Althought, is almost invariant as a function bf/t, it varies
with § to some extent, at least for/t = —0.3, as shown in
Fig. 12. In fact, this feature depends tyt, as described in
the next paragraph. Anyway, we find th@f is renormalized
AF N dwave L | soasto re.stor.e the ljesting condition, irrespective of. _
e 0 10 A Shown in Fig. 13 is the’/t dependence of the optimized
el VA t,/tfor U/t = 12. At half filling [(a)], the renormalized values
A ig of t,/t and the other variational parameters (not shown) are
constant with respect t/t. The optimized AF state is inde-
pendent oft’/t; this feature is common to all values bf/t
(> Uar/t). In contrast, fo > 0 [(b) and (c)].t,/t discontin-
uously changes at =t ~ —-0.0%t, and the other parameters
. (not shown) also exhibit singular behaviors (a cusp or discon-
5 tinuity) there. Checking various cases, we find that the value
of t/ /t slightly varies as the model parametefsl() vary but
is necessarily situated in the rang@.1 < t/ /t < 0. Thus, in
Fig. 11. (Color online) Energy improvement [Eq. (21)] by BRE compareddoped cases, the AF phase is divided into two subphases ac-
among the normal, AF (Sect. 5), adedvave pai_ring (Sect. 3) states as func—_ cording to whethet’ > t’L [type (D] ort’ < tl’_ [type (ii)]. In
tions of dopln_g rgte. Data fqr some_ system sizes are plotted. The thick plfé(ach subphase, thig't dependence d);/t is weak. However,
dash-dotted line is a curve fitted using Eq. (27) with for all values ofL. the s dependence (If7 is weak in the type-(i) AF, wherea§
changes markedly asincreases in the type-(ii) AF. Thus, the
effective bandsg" is distinct for the two subphases. As we
will discuss in Sects. 5.3 and 6, this transition is regarded as a
Lifshitz transition in the AF phase.

I ! I
JE = E,—E\(BR) U/t=12 -
(A=d, N, AF) t/t=-03 4

0.151\

JE [t
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Fig. 12. (Color online) Optimized band parameters in pure AF state for  _g 1
t'/t = —0.3 plotted as functions of correlation strength. The doping rate is
different among the three panels. The legends displayed in (a) are common to

(b) and (c). The arrow in each panel indicates the AF transition point.

Fig. 13. (Color online) Optimized band parameters in pure AF state for
U/t = 12 plotted as functions df/t. The doping rate is élierent among the
three panels. In (a), (b), and (c), data fo= 10-14, 10 and 12, and 10 are
plotted respectively. The legends displayed in (c) are common to (a) and (b).

; imi C AF
Finally, let us compare the opt|m|zﬁ and &k - u/t, The arrows in (b) and (c) indicate the valuegoft.

which is the sole #ective band parameter thSC, behaves
as a linear function of /t with a positive cofficient [Eq. (20)
and Table ], indicating that BRE are mild, and a trace of the
bare band remains [see Fig. 31(a) later]. On the other hand, for

; : . . In Fig. 14, we show th&J/t dependence of the energy re-
the AF part, BRE are prominent in thigyt is almost indepen- .
dent oft /t, and fort’ < t; , the sign ofty/t becomes opposite duction by BRE [Eq. (21)]. In contrast to the casedefvave

that oft’/t [Figs. 13(b) and 13(c)]. Generally, the optimizedpairmg’ avery large energy imprpvement Is brought abou_t by
forms of 7 ande" are distinct, particularly, in the case of BRE for U ke Uar, consistent with the large BR shown in
t <t . This applies to the mixed state. Fig. 12 fort. /t = =0.3. Energy improvement occurs even for
L t'/t = 0 [Fig. 14(b)] because the BRE dg andt, are not
small, as shown in Fig. 13, althougit/t is an order of mag-
nitude smaller than that faf/t = —0.3. TheU/t dependence
of AE/t for t'/t = 0.3 (not shown) is quantitatively similar
Sz_somewhat smaller for a larg® to the case of’ /t = -0.3.

5.2 Large energy reduction by BRE
As shown in a previous VMC study without BR¥Ethe en-
ergy of the AF state is not lowered relative to the parama

netic state even at half filling fg’ /t| > 0.35—Q41 (depending ) . . X
~ . , We find from Fig. 14(a) thaAE/t is a monotonically decreas-
onlL)andU/t = 12 (see Fig. 15 later). Far> 0 andt’/t < 0, ing function of¢ for a largelt’/t| (actually, whernt’/t < -0.2

this boundary value df'/t| tends to decrease; for example, for , ; . .
t'/t = -0.3, the optimized AF gapar substantially vanishes andt’/t > 0.3). This has already been illustrated in Fig. 11 for

) . . U/t = 12 andt’/t = —0.3. AE/t decreases asincreases, but
for 6 > 0.03. However, as discussed in preceding repres) - ) ;
the AF state¥,r with BRE [Eq. (28)] is stabilized with re- the area of finit&\E/t is considerably extended updo- 0.22

spect toPy up t06 ~ 0,16 (Q21) fort’/t = 0 (+0.3). First, we for this parameter set. We repeat that the energy reduction by

. . . BRE in War is much larger than that in the normal add
look at this great improvement by BRE more systematically, . o
wave states. Such an improvement occurs in wide ranges of
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— 0.01} e —a—-—5--~0,08] . ) o
- T - —— 012 Fig. 15. (Color online) Total energy at half filling fad/t = 12 compared
% w S —©- 016 ] among various states with or without BR as a functiort’¢f. Dark (pale)
0.0051- ; Ry, symbols indicate cases with (without) BRE. Open, filled, and half-filled sym-
‘ : bols indicate the data df = 10, 12, and 14, respectively. Arrows denote the
) WGO%? 1 energy reductions brought about by BRE for th&etent states. ‘SF’ indi-
9 A L GQ@ | . cates a staggered flux state.
0 10 20 30
U/t

Fig. 14. _(Color online) Energy gain brought about by BRE¥ar plotted [t’/t| increases, mainIy owing to the decreaseEjn Conse-

as a function ol/t for (a) '/t = ~03 and (b)t'/t = 0. Note that the scale guently, the order in Eq. (31) does not change over a wide

on the vertical axis in (a) is 10 times larger than that in (b). Data for several . . .

doping rates are shown. range ofs except for is the SF state, where it rapidly becomes

unstable, especially fdaf/t > 0.2”) Incidentally, by analyzing

the charge-density structure factor, we find tifat becomes
metallic fors < 029 At any rate,¥ar with BRE has much
lower energy thary in the whole range of’/t in Fig. 16.

Trpis is not the case foPar without BRE (see also Table 1V).

By drawing similar figures for various values 0f/t, t'/t,

and ¢, we construct the phase diagram in tbét-6 space

Eshown in Fig. 17. It is notable that, in contrast to previous
studies, the AF area faf/t = —0.3 becomes wider than those
for t’/t = 0 and 03 and covers a very wide range of model
parameters)/t, t’/t, andé.

U/t (> Upag/t) andt’/t (s —0.15).

the regime of Mott physicsU > U,). In Fig. 15, we com-
pare thet’/t dependence dE/t at half filling among¥y, ¥g,
and¥ag. For each, the values with BRE and without BR
are plotted. Without BRE, the total energy depends’gh
whereas if BRE are introduce®,(t'/t) (A =N, d, AF) is
optimized at¥, (0) for anyt’/t. Consequentlyiz/t becomes
independent of /t because the diagonal hopping energy val

ishes: né.3 Lifshitz transition and electron-hole asymmetry

Before discussing the Lifshitz transition, we mention the
Ev =(Hy)=0  (foré=0) (30)  behavior of the staggered magnetization [Eq. (29)Wikk.
We find thatm gradually increases &$/t increases fotlar <
U < 12t and is almost constant far > 12, irrespective of
andt’/t (not shown). Shown in Fig. 18 is th&'t dependence
of mfor some values af andU/t. At half filling, mis constant
Ear < Eq < Esp< En (31) and~ 0.88 (mbecomes 1 for the &kl state) becauskar is

for awide range oft'/t| (at leask 0.7) at a fixedJ/t (> Ug/t). invariant fort’/t, as me,ntioned in Sect. 51 Fér> 0, an
Here, ‘SF’ indicates a staggered flux state, which is a candi0maly appears #t=t/, and the dierence in the two areas

date pseudogap state in cuprdt®&8and will be discussed in PECOMES MOre conspicuouscscreases. _
Sect. 6.3. To confirm that the transition arising &yt is a type of Lif-

To consider doped cases ¥ 0), E/t for various states are shitz .transition, we.plot in Fig. 19 the momentum distribution
compared in Fig. 16 fof = 0.0833 L = 12). Similar results function [Eq. (25)] in'¥ar for U/t = 12 along the path in the
for other values ob were presented in Fig. 2 in a preced_orlgmal Bnllggm zone mentioned in the caption. !n panel (a),
ing report3Y) The energy reduction i¥ar brought about by n(k) at half filling is drayvn_forl__ = 10-16, which is §mooth
BRE for large|t’/t| is still sizable, ancE/t exhibits diferent along the Wh(_)le path, |nd|cat|_ng that the state is insulating.
linear behaviors on opposite sides of the Lifshitz transitior) '€ Systém-size dependence is very small. On the other hand,
pointt/ /t. In W and¥gy, E/t tends to decrease for/t > 0 N doped cases with ~ 0.08 shown in panels (b) [type ()] and
ast'/t increases, and also decreasestfr < —~0.4—0.5 as (c) [type (ii)], pocket Fermi surfaces appear and the state be-

andE; andEy become constant with respectttgt. As a re-
sult, the energy itWar (and¥y) is greatly reduced for large
values ofit’/t|. The order of the energy becomes

10
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Fig. 18. (Color online) Sublattice magnetization [Eq. (29)] in the AF phase
plotted as a function of /t for various values o6 andU/t. The red arrow
05 : indicates the Lifshitz transition point.
=U.o~ |
--+--Norma (No éR)
—— Normd (BR) |
— Normal (BR, optim.)
o itme&%wém comes metalli¢® In each pane_l, we plot datf_i for various \_/al-
[ —=— d-wave (BR2) ues oft’/t (L = 12) and for various system sizes for a typical
iﬁi EEISER) i \ t’/t (0 or-0.3) at the same time. In the type (i) [(ii))] regime, a
R T . VT pocket Fermi surface arises around the antinodal pairi)(
-0.5 T 0 0.5 [around /2,7/2) in the nodal direction]. To visualize this
t'/t=-03 t'/t feature, we constructed corresponding contour map¥lof

as shown in Fig. 20. The location of the pocket Fermi surface
Fig. 16. (Color online) Comparison of total energy among normal, &, suddenly jumps fr_om“ (7,0) to ~ (n/2,7/2) att’ = .t'L: al-
wave, and staggered fifR states with various levels of BR as a function though the behavior afi(k) other than at the Fermi surface
of t'/tfor L = 12,6 = 0.0833, andU/t = 12. The blue arrow indicates changes only slightly With’L/t_ Note that the form of the
the Lifshitz transition point of the AF state. In addition, we illustrate thetpocket is almost preserved for a fixédast'/t is varied. It

e

procedure for obtaining the optimized energy with BRE for the normal sta . .
(red line) from raw data without BRE (black circles) féyt = —0.3. The IS notable that the pocket is narrow but very deep, suggesting

green line denotes the variational energy for BRE as a functionofupper  that the advantages of half filling, such as the nesting con-
axis) fort’/t = —0.3, which corresponds to the dark-green line in Fi2 A dition, are well preserved by filling this narrow pocket with
For details, see Appendix A. doped carriers and leaving the other parts intact. Anyway, this
first-order transition occurs with a topological change in the
Fermi surface.
The source of this topological transition may have already
arisen in the bare tight-binding dispersion or at the mean-field

t/t \ level. In Fig. 21(a), we show the Fermi surface at half fill-
ook :ﬁ: _0%3 ' % ing fort” = 0, namely, the AF Brillouin zone boundary, on
0.3 \ \ which & = y¢ = 0 as shown in Fig. 21(b) in red. If we add
_ X “ an infinitesimal diagonal hopping terry[k)] (blue), the de-
3 L=10.12 1 I d-wave generacy in the regiom(0)—(t/2, ©/2) is lifted and the band
10 AF " 1 maximum appears at(0) or (r/2, 7/2) according to whether
- t'/t > 0ort’/t < 0. As shown in green in Fig. 21(b), the third-
= e X neighbor hopping term,(k) has a similar ect, if the sign of
¥.' ‘ ‘ ‘ ‘ ‘ | t” is opposite the sign df, although we do not treat it here.
0 0.1 5 0.2 0.3 If we consider ordinary AF mean-field theory, the situation is

similar because the quasi-particle dispersion

Fig. 17. (Color online) Rough phase diagram lilyt-6 space constructed EAF _ U 2, A2 32
within ¥ar and¥y, both with BRE. Because the dashed border lines indicate k — 797 VY&t BarF (32)

the locus of vanishing AF orders, the region of thevave state may some- . . .
what extend to the AF side. The region of thavave is schematic, especially, is degenerate in the regiom,0)-(r/2,7/2). When we add

on the larges side. Hy as a perturbation to this framework, the leadingiestence
in the dispersion relation is aga{®ar|Hy |Par) « £1(K). In
these examples, the boundary of the topological change is at
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Fig. 19. (Color online) Momentum distribution function plotted along the dath» X - M — T for U/t = 12 in three cases: (a) half-filled case, in which
¥Yar becomes independent 6ft, (b) doped cases(~ 0.08) witht” > t/ [type (i)], and (c) doped casé ¢ 0.08) witht’ <t/ [type (ii)]. Data forL = 10-18
are plotted together. Pocket Fermi surfaces for the doped cases are indicated by thick arrows.

AF(BR) (a) t/t: arbitrary, &=0 (c) t/t=-0.3, 6= 0.08

O,

)
)2~
)/

Fig. 20. (Color online) Contour maps of momentum distribution functigh) of the optimized pure AF state fdd/t = 12 shown for (a)y = 0 with
arbitraryt’/t and fors ~ 0.08 with (b)t'/t = 0 [type (i)] and (c)-0.3 [type (ii)]. The parameters in (a), (b), and (c) correspond to those in (a), (b), and

(c) in Fig. 19, respectively. The maps are constructed using datafo80-18. In these contour maps (and similar ones displayed henceforth), the fourfold
rotational symmetry is somewhat smeared on account of anisotropic boundary conditions, open-shell conditions, and functions of the graphic software used.

t’/t = 0. Nevertheless, it is not trivial whether this topological

@ () change is connected to those in strongly correlated cases (and
©Om) () Aol Nodd even with a large), and, if it is connected, whif /t slightly
g I~alt deviates to the negative sidetoft.
o “\.\_ 1 A topological change equivalent to the present result was
o bk ’)’\_\ found in the spectral functioA(k, w) for the cases in which
(-m.0) <. @0  Z S a few carriers are doped in ti’-J model and its extensions
I using various method¥:%% In particular, Refs. 51 and 52
b ’,'52 It | clearly argued, by means of a self-consistent Born approxima-
-t . tion and a VMC method, respectively, that the location of the

band maximum is dierent between hole- and electron-doped
cases for typical parameters of cuprates. Actually, angle-
resolved photoemission spectroscopy (ARPES) experiments
Fig. 21. (Color online) (a) Bare Fermi surface at half filling in the tight- "€vealed that the evolution of the Fermi surface with dop-
binding model witht’/t = O shown with a pink dashed line in the first ing is different in hole-doped and electron-dopéd cases
Brillouin zone. The nodalx/2,7/2) and antinodal#, 0) areas are marked in lightly doped systems, in accordance with the results of the
by shadows. (b) Elements of bare band dispersion relations a0y £ ahove theoretical study. Our result for the Hubbard model di-

(7/2,7/2): y /t = —2(cosky + COSKy), £1/t" = —4 cosky cosky, ande/t” = .

—2(cos Xy + cos Xy). t” indicates the hopping integral to the third-neighborrectIy corresponds to these results for slightly dopdetype

sites 2, 0) and (Q+2), which is disregarded in this paper. models. o . . _
As we will discuss in Sects. 6.2 and 6.3, this topological

(0,-m) (o)  (m2m2)
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Table IV. Relative and intrinsic stabilities of pure AF states and mixed
states of AF andi-SC orders obtained in recent studies using the Hubbard
model summarized according to the level of BR and to whethiér~ 0 or

—0.3. In theU/t column, a typical target value is given. The first row denotes -0.3 2
the range of finite AF orders. The second row indicates whether the system is » 5/31 L o
homogeneous or phase-separated (P. S.). The third row for the mixed states 04 03 ——
shows whether AF and-SC orders are coexisting or mutually exclusive (and 0.1 -
the dominant order) in the main (or sma)larea ofm > 0. '8:(1) &= 15
Trial states | Uit | v/t~0 | t/t~-03 | References 05 8'8
AF (no BR) 8,12 | 65015 no AF 4 0.3 R
P s _ 06 03 o
AF (BR) 12 | 65016 55022 29,30 & i, 1€
P.S. homogeneous this work 0 .
Mixed (no BR) 6502 — “m
10 — — 18
coexisting — - 0.5
Mixed (BR only 65015 65015 T
in SC) 10 P.S. P.S. 20,23 e
coexisting | exclusive, AF D e
Mixed (BR in §<0.16 §<0.25 31& 1 )y cax  pr |
AF & SC) 12 P. S. homogeneous this work 0 0.05 0.1 > 0.15 02 0~29
coexisting | exclusive, AF
Mixed (many §<0.18 §<5024
parameters) 10 P.S. homogeneous 5 Fig. 22. (Color online) Total energy per site and staggered magnetization
coexisting | exclusive, AF (right axis) obtained folmix with U/t = 12 plotted as a function of doping

rate. Data for four values af/t andL = 10-14 are shown.

difference in the Fermi surfaces e determines whether
or not thed-wave SC order coexists with AF orders.
Table V. Second-order cdicient c; estimated by the least-squares
6. BRE on Mixed State of AF and SC Orders method forE(5)/t [Eq. (34)] in the AF phasel/t = 12) of Wnix. For posi-
In this section, we study a mixed state of AF ah&C or- tive (negative)cz, Ymix is stable against (unstable toward) phase separation.
. ' . Digits in round brackets indicate the error in the last digit.
ders in a strongly correlated regimég ¢ Uy):

v/t | c(L=10) | co (L =12)

Ymix = PDnmixs (33) -04 2.42(8) —

, o -03 1.85(9) 1.95(8)
wheregl" andeZ© are independently optimized. In Sect. 6.1, 01 0509(6) |  0.323(8)
we study the stability against phase separation (PS) and dis- 00 | -0551(5) | -0.553(7)
cuss whether charge fluctuation thereby correlates with the 03 0.830(4) —

enhancement of-SC. In Sect. 6.2, we consider the mech-
anism for the coexistence or mutual exclusivity of AF and

d-SC orders. In Sect. 6.3, the notion treated in Sect. 6.2 is agre shown as a function of the doping rate. First, we discuss
plied to the relationship between the staggered flux&8€ the range in which the finite AF order occurs. As compared
states. In Sect. 6.4, we discuss the relationship between tjgh the pure AF stat&ar,2? the value ofs at whichm van-
pocket Fermi surfaces in the type-(ii) AF state and the Fermihes 6ar) is hardly changes fdf/t = 0: 5a¢ ~ 0.16, whereas

arcs observed in the pseudogap phase of cuprates. Sar somewhat increases for a laritfgt|. This small change in
N _ _ oar Stems from the small energyftrence betweet,ix and
6.1 Stability against phase separation War (or ¥q), as shown in Table IIl.

Before discussin@mix, we refer to known aspects of the \We next consider the stability against PS. This property
intrinsic stability of 'y, W4, and¥ar against PS. Except for is often judged by the sign of the charge compressibility
the limit of 6 — 0, at which the anomaly of the Mott transi- [= (1 - 6)2y.] or charge susceptibility. [= (82E/d6)71].
tion appears, the normal stait is stable against P2} As  For y. > 0 (yc < 0), the state is stable against (unstable to-
for Wq, E/tis a linear function ob (yc — oo) forasmalls, as  ward) PS. Thus, we need to consider drdependence dE /t
we will discuss later, indicating that the stability against PS igFig. 22). Similarly to for¥ar,? we find for® , thatE(s)/t
marginal. However, this is distinct from the apparent instabiks fitted well by the parabolic form
ity of War toward PS. In the second row of Table IV, we sum- 5
marize the conclusions of related VMC studies on the stability E(8)/t = Co + C16 + 26 (34)
against PS of the AF and mixed states. The pure (not mixeg)the whole AF range) < éar); we have a unique valyg =
AF state is known to be unstable toward PStfgt ~ 0%  ¢;1in the AF phase. The values of thus estimated for some
but stable fott’/t ~ +0.3.2%) A mixed state in which BRE are values oft’/t andL are summarized in Table V. It reveals that
introduced intosg© but the AF part is fixed asi™ = %®? ¢, (namelyy.) becomes negative only for a narrow range near
exhibits instability toward PS for botti/t = 0 and-0.3. To  t'/t = 0, minutelyt] <t < 0.2t (see Fig. 27 later). This aspect
summarize, states with AF orders exhibit a tendency towaigd basically the same as that of the pure AF st&t&hus, the
PS depending on the value wft. instability toward charge inhomogeneity originates in the AF

We study this property fo'nix [EQ. (33)]. In Fig. 22, the order and is not directly connected with SC, as we will discuss
total energy and sublattice magnetization [Eq. (29)F¥iax  shortly.
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Fig. 23. (Color online) Two elementHjy (blue) andgy, (red)] of diagonal- 3 ———m— 14 | o
hopping energ¥y (= Eq + Ep) plotted as functions of doping rate for three i } * % 16
values oft’ /t. Data forL = 10 and 12 witHJ/t = 12 are shown. - < a}(
< 06k * d-wave |q o1
oo , )
Y, N %
Now, we identify the origin of the stability against PS for R SN ’
large values oft’/t|. First, we analyzd/t by dividing it into 0.8 (b) t/t=00 \\;
its component&y /t, E¢/t, andEy /t. Becauses/t (Ey/t) is | . N . . RN
almost linear (somewhat convex) as a functionsdbr any 0 0.1 0.2 " 08
value oft’/t andU > U, (not shown), these components do J

not contribute to phase stability. On the other haBdt is

concave for any’/t’ but, of course, the degree of ConcaVltyFlg 24 (Color'online) TOtaI energy and-wave SC correlation function

diminishes agt’ /| decreases and vanisheg’at = 0. We fur- (right axis) obtalne_d foly Wlth U/t = 12 plotted for (a)t’/t = 0.3 and
N (b) t’/t = 0 as functions of doping rate. Data for four valued afre shown.

ther analyZEV by d|V|d|ng itinto the two componentsy and Above each panel, the ranges of appreciable SC and wherev are shown.

En (Ev = Eq + En), WhereEqy (En) is the contribution of di-  The straight dash-dotted line &/t is a guide for determining, .

agonal hopping that changes (does not change) the number of

doublons? In other wordsEg is generated by the creation or

annihilation of D-H pairs, whileég;, is generated by the hop-

ping of doped (isolated) holes. In Fig. 23, we shoyv&h@— comes M3 (Ag/t < 0.03 for § > 6sc). We confirmed a
pendences okq andEy for three values of /t. We find that  ynown tendency thaisc increases ag/t decreases [for in-
both Eq andEp are concave but the curvature is much sharpgfiance see Fig. 25(d) in Ref. 4kc ~ 0.20,0.27, and (81
for En. To summarize, diagonal hopping {erm), especially for ¢/t = 0.3,0, and—0.3, respectively. Thus, the behaviors
that of doped holes, brl)ngs about |ntr|nS|_c stab|I|ty_aga|nst P3f 5, andésc as functions of’/t are opposite; the increase in
A recent VMC study argued that the increasejg has a | rather has a negative correlation with the magnitude of SC
one-to-one correspondence with the enhancement of SC .
der in the wave function used. We check this point for the next we consider the case ... As mentioned above
presentfy and'¥mix. First, we discuss the pure SC stai,  the range ofy < 0 is included in the regime of type-(i) AF,
yvho_seé depe_ndence oE/t for t'/t = 0.3 and 0 is shown _g (5 < t'/t < 0.2. As an example, we show in Fig. 25 the
in Fig. 24. Aside from a Mott anomaly faf — 0, E/t be-  gependence d/t for t'/t = 0. We repeat that the area where
comes almost lineay tends to diverge) fob < J, (SPIN- £t is convex precisely coincides with that of finite (5 <
odal point), whileE/t becomes concavey{ remains moder- s, .y indicated by a green arrow. For> a¢, where the state
ate) for > ;. Note thatyc does not become negative Un-is Sc g/t is concave. Furthermor@q is smooth as = Sar
like _the case o¥ar. Such behavior oE/t is preserved if 544 not particularly enhanced in the aregok 0. Anyway,
U/t is varied, but the range ofc — ot shrinks ast’/t de- 554 increases, after the AF order (or instability toward PS)
creasesj, ~ 0.17,0.15, and 012 fort’/t = 0.3,0, and-0.3, \anishes atar ~ 0.16, SC survives up tésc ~ 0.27 for
respectively. On the other hand, the SC correlation functhn/t — 0. In contrast, fot’/t = 0.1 [as in Fig. 26(a)], the SC
exhibits the opposite behavior. As shown in Fig. P, eX-  first becomes weak ait ~ 0.12, but the area ofc < 0 (and
hibits a well-known dome shape and the SC order is percegg order) continues up t6 ~ 0.18. The relative sizes af
tible for 0 < § < 8sc. Because the statistical fluctuation Ofwhere)(c < 0andPy > 0 are reversed a&/t varies.
Py becomes large fof ~ dsc, we estimat&sc very roughly Through the above analyses, we can conclude that the in-
by the condition that the optimized gap parametert be-  giapjlity toward PS does not directly correlate wiHSC, al-
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Fig. 25. (Color online) Total energy (arbitrary unit) andwave SC corre-

lation function obtained foln,ix with U/t = 12 andt’/t = O plotted as a

function of doping rate. Instead &/t, we plot € — ¢ — ¢16)/t with & and 0.02
¢1 appropriately adjusted to emphasize the curvatuie/afThe area of finite

staggered magnetization is shown by a green arrow.

though the ranges df/t where SC and PS arise are simi-

lar as shown in Fig. 27. As discussed in Refs. 4 and 55, we (o5
consider that the AF spin correlation and the suppression of
charge fluctuation owing to the Mott physics are responsible

for the behavior of the-wave SC. We will return to this topic

in Sect. 6.2.

F'”a”}” we emphaS|ze_ the |mp0rFance.of BRE again. Aéig. 26. (Color online) Doping-rate dependencedivave SC correlation
shown in Table IV, a mixed state in which BRE are confynction Py (left axis) and staggered magnetizatiorright axis) shown for
sidered only insg© exhibits instability toward PS even for U/t =12. (a) Cases df > ] [type-(i) regime] and (b) those df < t; [type-
t'/t = —0.3.29 |n this mixed Stat&;ﬁ": is fixed atyy [Eq. (13)], () regim_e] for bothL = 10 and 12. The Lifshitz transition point of the pure
which is similar to the optimizeg?” for t'/t = 0 (t;, t, ~ 0, AT stateis/t~-005.
see Fig. 13 for instance) in the PS area. This means that the
BRE one&," (independent of the BRE asF©) are crucial for
this property.

is almost zero fob < dar and grows after the AF order van-
6.2 Coexistence or mutual exclusivity of AF ai&C or- ishes § > dar). Thus, the two orders are mutually exclusive.
ders More accurately, in panel (b), a narrow range of coexistence

Previous studies using various mixed states witBXists near the boundady= dar for small|t’/t|, typically for
BRE®16.19.20) gnd a recent study using density matrix’/t = —0.1. The boundary between coexistence and mutual
embedding theory (DMET) argued that the orders of AF exclusivity is situated &t = t, ~ —0.0%, which is consistent
andd-SC are coexisting or mutually exclusive according taVith the previous results.-1%19-29In the present results, it
whethert’/t ~ 0 ort’/t < —0.1. Here, we systematically study Seems that the AF state is always more robust than+B€
this point for¥my and deduce the origin of the coexistencestate and that the features of the underlying AF state control
of the two orders, which is closely related to the mechanisifhetherd-SC appears or not. We will return to these points
of d-SC. shortly.

In Fig. 26, we show thé dependence of thé-SC corre- On the basis of the results fdf,x above, we constructed
lation function and staggered magnetization [Eq. (29)] medbe phase diagram in tidet’ space shown in Fig. 27. In accor-
sured iNWmix. For ¥mix, We represent the-SC correlation dance with Fig. 17 for the pure states, the AF state occupies
function by Py = Py4(R) [Eq. (22)] with R being the vector & Wwide area. Except for the range 0.1 < t'/t < 0.2, SC
connecting the distant points in the system used [For instan&©es not appear for low doping rates 0.2). Furthermore,

R = (5,5) for a system with. = 10], because we focus on @ mentionedy. becomes negative fdaf < t' < 0.2t. The

a strongly correlated regime (See Appendix C in Ref. 4). wetate phase separates into an AF state at half filling and a state
show the results separately for the type-(i) AF and type-(iij? the overdoped regime & 0.15). Therefore, homogeneous
AF regimes in panels (a) and (b), respectively, because tRé does not appear in the underdoped regime for any value
features are distinct in the two regimes. In the type-(i) regim@f t'/t. This result greatly modifies the results of previous
[panel (a)], the SC orderP() arises or vanishes regardlessvMC studies without BRE, in which-SC widely prevails for

of whether the AF ordem() is present or absent. For exam-t'/t < 0, but is consistent with recent results of studies aap-
ple, fort’/t ~ 0, AF and SC long-range orders coexist foPlying many-parameter VMC methods to Hubbard-type mod-
& < 6ar and SC remains fafar < 6 < 6sc as a pure SC or- €ls” and ad-pmodeP® and a study employing DME?.Such

der. On the other hand, in the type-(ii) regime [panel (B)], predominance of the long-range AF phase is inconsistent with
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(ii) A d-SC gapAg with a similar form to Eq. (8) has a large
magnitude atx, 0).

(iii) The scattering ofg = (rr, w), which is induced by the
AF exchange correlation between nearest-neighbor sites, is
possible by connecting two antinodal points with opposite
signs ofAg.

In Fig. 29(b), we ploin(k) obtained in¥,x for the same
parameter sets as in Fig. 29(a). Corresponding contour maps
are displayed in Fig. 30. Faf/t = +0.3, the results folnix
are almost the same as those ¥t shown in Figs. 19(b)
and 19(c) because the SC order does not appear. The results
are also similar in Figs. 20(c) and 30(a) foyt = —0.3.
However, fort’/t = 0, where SC appears, the pocket Fermi
surfaces at the antinodes W in Fig. 19(b) are replaced
with gap behavior (green) similar to the decreasing slope in
Yy in Fig. 29(a). It is clearer to compare Fig. 20(b) Bk
with Fig. 30(b) for¥nx. This reveals that for thé-SC order,
Fermi surfaces in the nodal directions are not necessary but
gap formation in the antinodes is vital. Incidentally, the resul-

Ftig. t27d. f(Col_or (cj)nlitnf;’ Pha_ls_ﬁ diagrallm ft; sgace fqrté_/t t: 1t2h con-  tant SC in the coexisting state, if any, does not have a feature
structed for mixed stat®mix. The purple shaded area indicates the regime : : .
unstable toward phase separation, which is limited to within the type-(i) Apf cuprate SCs, namely, nodal Fermi surfaces [Fig. 29(b)];

phase. The bold red dotted line indicates the Lifshitz transition bourtlgry they.are Smeared out by.an AF gap. To provide an overview
of this topic, we summarize in Table VI the locations of the

local Fermi surface centers of the three states for typical val-
ues oft’/t. From this table with the above discussion, we may
Table VI. Locations of the centers of local Fermi surfaces in the state rederive two requisites fod-SC in the mixed state:

alized for a smalb (leftmost state for the mixed state) addt = 12 summa- . .
rized for the AF,d-SC, and mixed states. For the mixed state, the evolution (I) In the underlymg pure AF (OI’ normal) state, Fermi

of the realized states asncreases is shown fors 0.3. ‘Co’ (N) indicates ~ surfaces exist in the antinodes [aroundQ) and equivalent

0.25

0.2

o 0.15

0.1

0.05

a coexisting state with AF ardtSC orders (normal state). points].
vt AE SC NVied (1) The hot spots determined ky“ (see Sect. 3.1) are sit-
Evolution of state uated in the Fermi surface area mentioned in (I).
-03 | (n/2,7/2) AF(ii) — SC (n/2,7/2) On the basis of these conditions, we can explain the evolu-

-01 | (r/2,7/2) | Always | AF(i) - (Co)— SC | (r/2,7/2) tion of the states realized ¥i,x mentioned in Table VI. We
8'2 g 8; (x/2,7/2) gg: ig(g’ﬂ N mg show the main point schematically in Fig. 31. Fok t/, item
03 | (r.0) AF() - N (r, 0) (1) is not satisfied for a smali, andd-SC does not emerge

as shown in Fig. 31(d). However, @sapproache$ag, the

edge of the Fermi surface centered &t =/2) extends to

the results of experiments on hole-doped cuprates as wellthe antinodes, as will be shown in Fig. 34(c). The scatter-

recent advanced studies on electron-doped cuptat®$We ing therein possibly yields a narrow window of coexistence,

will discuss this point in Sect. 7. for example, fort’/t = -0.1 [§ ~ 0.12 and~ 0.139 for
Next, we consider why a-SC order can coexist with a L = 10 and 12, respectively] in Fig. 26(b). Regarding item
type-(i) AF order but is incompatible with a type-(ii) AF or- (ll), the hot spots stay near the antinodes in this rangé/bf

der. We can deduce the reason by considering the location[gfg. 31(a)]. On the other hand, for > t/, item (1) is satis-

the Fermi surface in the underlying pure AF state. First, wied. For a smallt’/t|, item (ll) is also satisfied [Fig. 31(c)],

review relevant properties of théSC state. In Figs. 28(b) so that a coexisting state appears as in Fig. 26(a). However,

and 28(c), we show contour mapsrgk) for ¥q witht’/t =0  ast’/t increases, the hot spots shift toward the nodal area [red
andt’/t = —0.3, respectively. The steep slopergk), indica- in Fig. 31(a)] and deviate from the Fermi surface range in the
tive of a Fermi surface, exists only neat(/2, +7/2), and the antinodes [Fig. 31(b)], which is relatively narrow as shown
gentle slopes aroundf, 0) and (Q+x) indicate gaps, in con- later in Fig. 35. Consequentlg-SC does not appear appre-
trast with the feature of the normal state shown in Figs. 28(ajiably for t’/t = 0.3, as shown in Fig. 26(a). This behavior
which clearly exhibits a Fermi surface in all directions. Incontrasts with that of the pukSC state (Fig. 24), in which

Fig. 29(a)n(k) in Wy [corresponding to Figs. 28(b) and 28(c)]d-SC becomes weak more slowly because the hot spots are al-

is shown along the same path as in Fig. 19 for three valueswhys situated at the Fermi surface of the underlying $¥ate

t'/t. As t’/t varies,n(k) around f, 0) greatly varies but the and the scattering intensity becomes weak as the hot spots

nodal Fermi surface near (2, 7/2)?Y hardly change$. This  move away from the antinodes.

indicates that the electronic states negiOf are closely re-  To summarize, because the AF state underliesl{8€ or-

lated to SC, because properties associated with SC suh agder, substantiad-SC arises only when the scattering@fin

greatly change with'/t. Actually, antinodal Fermi surfaces the antinodes is compatible with the AF behavior. The requi-
have the following advantages fdfSC on the square lattice: sites for this are given by (1) and (ll) above.

(i) The density of states diverges at () owing to a van
Hove singularity fort’/t| < 0.5.
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(b) d-wave, f/t=-0.3

Fig. 28. (Color online) Contour maps ofk) atU/t = 12 ands ~ 0.08 shown for (a)optimized normal (paramagnetic) stafewvith t’/t = —-0.3 (L = 10-18)
and for (b) and (c) optimized pudewave pairing stat&y with t'/t = 0 (b) and-0.3 (c) (L = 10-16).

(a) d-wave
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Fig. 29. (Color online) Momentum distribution functions for @SC state
and (b) mixed state fdd/t = 12 ands ~ 0.08 compared among three values
of t’/t. In (a), a nodal Fermi surface is indicated by an arrow. Dat4 fer12

and 16 are plotted.

6.3 Coexistence al-wave SC and staggered flux orders
To highlight the importance of Fermi surfaces in the antin
odes for inducing a-wave SC order, we consider the bar

dispersion of a staggered flux (drdensity wave) stat&*?)
Although this state has been extensively studied as a candidate
for the pseudogap state as well as the ground state of cuprates,
here we avoid referring to various interesting aspects of this
state and focus on its bare dispersion:

g = -2t \/co§ ky + 2 cOS 2 cosky cosky + cogky, (35)

wheref corresponds to a quarter of the magnetic flux pene-
trating each plaquette of the square lattice and is treated as
a variational parameter here. For= 0, &© is reduced to
vk [Eq. (13)]; for6 = n/4 (n-flux state),s2F at half filling
yields a Dirac cone with a linear dispersion having apices at
(xr/2,+7/2). In Fig. 32, we show the Fermi surfaces gener-
ated bysZ" in the first quadrant of the Brillouin zone for two
values ofg and some values of for eachd. At half filling,
the Fermi surface is the apex of an elongated Dirac cone at
(r/2,7/2). Foré > 0, a Fermi surface appears as a slice of
an elongated Dirac cone around the nodal pairi2(z/2).
Gaps open in the antinodes aroundQ) and (Qx). The form
of the pocket Fermi surfaces and the antinodal gaps resem-
bles the features in the pseudogap phase of cuprates. Note
that the pocket Fermi surface becomes slender and its edge
approaches the antinodestedecreases ayat 6 increases.

Here, we study how the energytfy [Eq. (19)] varies when
we uses;F instead ofy, ase;“. If the coexistence of staggered
flux andd-wave SC orders is favored, the energytinmay be
reduced at a finite value éf In Fig. 33, we show the increase
in energy per sitdE as compared with that iy with y, as
a function ofé for t'/t = 0 andU/t = 12. For large values
of 6 (> 0.057), the energy markedly increases regardless of
On the other hand, for a smalland larges, AE is small or
slightly negative, as indicated by the arrow, meaning that the
two orders possibly coexist. In these cases, the Fermi surfaces
reach the antinodes. This is consistent with the notion that the
gap in the antinodes i for the underlying state is unfavor-
able to thed-SC order. To summarize, a robust staggered flux
order and al-wave SC order are unlikely to coexist, although,
to ensure this conclusion, we should investigate an appropri-

Ate mixed state of the two orders.
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Mixed, 6=0.08 (a) #/t=-0.3 (b) t/t=0 (c) t/t=0.3

3 2 1 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3
kx kx kx

Fig. 30. (Color online) Contour maps af(k) for the optimized mixed state &t/t = 12 ands ~ 0.08 shown for (a}’/t = —0.3, (b) 0, and (c) 8. The data
in these maps include the data used in Fig. 29(b). Systemd with0—-16 are used.
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Fig. 31. (Color online) (a) Quasi-Fermi surface ¥y obtained using:g®
in the first quadrant of the Brillouin zone fat/t = 12 ands = 0.08 for three
typical values oft’/t. The gray dash-dotted line indicates the AF Brillouin ke 0.6
zone boundary. (b)-(d) Possibility of scatteringep Q in Wix in the full SO
Brillouin zone. The hot spots in the SC part are indicated by circles. Data for 2 04
War with U/t = 12 ands = 0.0816 L = 14) are used to draw the contours. .
Occupied
0.2} |
] . ) [ Staggered flux stajte |
6.4 Possible relation with pseudogap re 1 | 1 X
One of the anomalous features arising in the pseudogap 0 0.2 O'Z}{ 06 08 1
phase [ < T < T*) of underdoped cuprates is the Fermi o/ T

arc$® observed in ARPES spectra, namely, unclosed Fermig. 32. (Color online) Fermi surfaces of a staggered flux state for two val-
surfaces whose centers are situated in the nodal directiores of¢ and various doping rates drawn in the first quadrant of the Brillouin
near (r/2, +1/2), and similarly Fermi surface pockéfs®?  zonel = (0.0), X = (x,0), M = (z,7), and Y = (0, x). The thickness of the

If T is fixed, a Fermi arc becomes longerd&mcreases and Fermi lines [e.g. fob = 0.2 in (b)] indicates tha&fFls relatively flat.
becomes connected to other arcs in adjacent quadrants of the

Brillouin zone to form an ordinary closed Fermi surface at the

phase boundaryT( = T*). The origin of the pseudogap has

not yet been elucidated. First, as a possible candidate for theAs shown in Fig. 20(c), a pocket Fermi surface of a type-
Fermi arcs, we consider the pocket Fermi surface of a dopéd AF state is formed aroundr(2, 7/2) and is similar to the
War. Fermi arc observed by ARPE%Ar has energy gaps around
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following subjects: (A) Ground-state phase diagrams in the
space ofJ/t, t’/t, ands. (B) In what regime and through what
mechanisms does the coexistence of AF d+®IC arise? (C)

In what regime and from what cause does instability toward
inhomogeneous phases occur? First, we itemize the main re-
sults in this work:

(1) In thed-SC state, the féective bandsgC is markedly
renormalized for the model parameterslft > 6, a large
[t’/t], and a smalb (5 0.1) (Figs. 4 and 5), as known pre-
viously. We found, however, owing to BRE, not only is the
improvement in energy much smaller than those in the nor-

0o Vo, o1 15  MmalandAF states, but also quantities related to BC$(q),
8/ n(k)] are modified only very slightly (Figs. 6-8).
(2) In the normal state, BRE apply = U, 6 < 0.05, and
Fig. 33. (Color online) Diference in total energy upon introducing astag—|t//t| > 0.1 with U/t being the Mott transition point (Fig. 10)_

gered flux 4 in &2F [Eq. (35)] forU/t = 12 andt’/t = 0. The thick arrow

indicates the minmum (at/x ~ 0.02) fors = 0.16. The improvement in energy is an order of magnitude larger

than that of thal-SC state but an order of magnitude smaller
than that of the AF state (Fig. 11).
(3) In all the states studied, band renormalization takes
the antinodes in the sense thgk) is smooth with a finite place _to reduce the k|ngt|c enerdk:) at the cost of the in-
teraction energyHy), which corresponds to the tendency of

IVn(k)|. In Fig. 34, we show contour maps afk) for dif- 2
. o a strongly correlated state to undergo a phase transition to
ferent doping rates, where the other conditions are the same

(t/t = —0.3, Ujt = 12). This figure reveals how the pocketreduce the kinetic enerdy?® In the resultant renormalized

Fermi surface evolves asincreases; a small pocket Fermiband’ the nesting condition tends to be restotg ¢ 0).
' P (4) For the AF state, BRE are useful for reducing the en-

surface appears aroung/@, w/2) for very light doping, the . . -
2 2rgy, especially fot’/t < O (Fig. 14); the qualitative features
arc length becomes long along the AF Brillouin zone bounogre almost independent bfft for U > Upe. As a result, the

ary (r,0)—(Q n), finally forming a connected Fermi surfaceAF state occupies a wide ared & 02) in the phase dia-

e o e e e s (Fgs. 17 an 27).The A area s consideraly v
: ort’/t = —0.3 than fort’/t = 0, in contrast to the results with-

the Fermi arc of cuprates. For the appearance of such behav-

ior at a finite temperature, it is also important that the type-(ii Ut.BRE' Ina qu.ed meta_||_|c AF state, 184 is varied, a type
. . f first-order Lifshitz transition takes placetat t, ~ —0.05t
Yar has a very low energy and is stable against phase sepa-

ration. Furthermore, the type-(i¥ar does not coexist with reggrdle/ss of the )’a'“es b/t ands. In the type-(|) LG} AF.
X . regime ¢ > t.) [(t' < t.)], local pocket Fermi surfaces arise
d-SC except fow ~ dar. Although this result cannot be di- . . .
rectly applied to the pseudogap phase of cuprates becaus round £, 0) [(r/2,7/2)] and equivalent points (Figs. 19 and
3285] This diference plays a critical role in inducing tdeSC

AF long-range order has not been observed, it is intriguing e i’ (6) before. The Fermi surface in the type-(ii) AF
that short-range AF orders of 20-30 lattice constants were ob- . ) .

4 IS possibly related to the Fermi arcs found in cuprates.
served up to high temperatur®s.

In Fig. 35, we show the evolution of contour mapsnék) (5) In the mixed state, the range of instability toward phase

as ¢ increases in the type-(i) AF stat€¢/ = 0). In con- separation (PS) is found to ig/t < '/t < 0.2, similarly

. , to in the AF state4.2®) The AF order is responsible for this
trast to the type-(ii) AF state, a pocket Fermi surface grows . : . .

’ X L : instability, which does not directly correlate withSC. Else-
from the antinodes in the nodal directions and finally forms

a closed Fermi surface centered’at (0,0) for 6 = 0.1633 where, the state is stable against PS. This stability is mainly
(not shown). Because energy gaps opensior dar in the due to the diagonal hopping of doped carriers.

S . : (6)The coexistence or mutual exclusivity of AF atk&EC
nodal directions, the type-(i) AF state, which corresponds to o . .
. ; grders was studied in the mixed state (Fig. 26). The AF or-

electron-doped cuprates, is not directly related to the Ferrgl ! I .
arc phenomena er has preferentially exhibits this property because the AF

’ part greatly reduces the energy compared with the SC part
7. Summary and Discussion (Fig. 16). By examining various cases, we found two requi-
sites for thed-SC order to arise (Fig. 31): (i) In the underlying
pure AF (or normal) state, Fermi surfaces exist in the antin-

wave pairing ¢-SC) and antiferromagnetic (AF) orders, as,?des. [”ea”(’s‘%) and _equwalt_ant areal). ('.') The hot spots de-
well as normal (paramagnetic), putSC, and pure AF states ermined bys~ are situated in the Fermi surface area. These
' ' ' requisites indicate that the scatteringjof (r, 7) in the antin-

It—)|>lljSEQ%I?—gtl'-au\;ar:EgZIna;Zlol\:l?hneEemci:xaer(ljos(t\a/i\g CéénEe \tlcg:jeti?]ttrrfodes is vital ford-SC. Thus, the coexistence basically occurs

duced into the AF and-SC parts independently; BRE on AF in the type- (/) AF regime. The range Uf/.t n Wh'.Ch COEXIS-
. . . tence occurs is similar to that for the instability toward PS
orders, previously not investigaté®, markedly change the

previous knowledge of the Hubbard model. By searching i§1F|g. 27), but this S|m|Iar|t_y is accidental. These requisites
X . . - _seem to apply to the coexistencedbEC and staggered flux
a wide model-parameter space with wave functions at var|o%§ ders

levels, we obtained systematic insights, particularly into the o . ,
y 9 P y The present results are quantitatively consistent with recent

In this paper, we studied band renormalizatioffieets
(BRE) owing to electron correlation on a mixed statelgf,.-
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AF(BR), t/t=-0.3 (a) 6= 0.04082 (b) 6=0.10204 (c) 6=0.14286

‘A0

Fig. 34. (Color online) Contour maps showing the evolutiomgf) as the doping rate increases in the type-(ii) AF state’for= —0.3 (U/t = 12). Three
typical doping rates are selected. Datalfor 14 are used.

AF(BR), t/t=0.0 (a) 5=0.04082 (b) 6=0.10204 (c) 6=0.14286

Fig. 35. (Color online) Contour maps showing the evolutiom) as the doping rate increases in the type-(i) AF stat¢' for= —0.3 (U/t = 12). Data for
the same doping rates as in Fig. 34 are displayed for comparison. Systents=with are used.

studies with advanced techniqued,and make it possible to proximations applied are not responsible for the predominant
reasonably interpret individual features of previous studies.AF orders, but the models are lacking in certain important fac-
Finally, we discuss the relationship with cuprates. Theors that destabilize AF orders. These factors may be disorder
present results that the AF order is predominant for a widar impurities inherent in cuprate SCs. It seems that theoretical
range of model parameterd(t > 6,5 < 0.2, mostt’/t) research on cuprate SCs may proceed to this direction.
and that unifornd-SC disappears in the underdoped regime After the submission of this paper, we noticed that BRE on
are consistent with those of recent VMCDMFT,®) and AF states were already considered in a VMC study of Watan-
DMET? studies based on the Hubbard model. Furthermorabe, Shirakawa and Yunoki for three-band as well as single-
recent VMC studies on theJ®® andd-p°® models display band Hubbard modef§) They used the optimization method
the same tendency. Nevertheless, these results are inconsigntioned as ‘an alternative approach’ in Appendix B. Their
tent with properties common to hole-doped cuprate SCs: thesults are basically consistent with ours.
AF long-range order is broken by less than 5% doping with We thank Kenji Kobayashi, Masao Ogata, Shun Tamura,
carriers and high, d-SC appears in the underdoped regimeJunya Otsuki, Yuta Toga, Hiroshi Watanabe, Kentaro Sato,
In addition, it was recently shown that well-annealed electrorand Masaki Fujita for useful discussions and information.
doped samples with small doping rates (5-10%) exhibit no AFhis work was supported in part by Grants-in-Aid from the
long-range orders but metallic or SC beha¥ic®® with en-  Ministry of Education, Culture, Sports, Science and Technol-
tirely closed Fermi surface$) Assuming that the AF order ogy, Japan.
is excluded for some reason, most properties of the remain- ) ] o
ing d-SC derived by theories so far are basically consistefPPendix A: - Details of Optimization in Normal State
with those of cuprates. Thus, it is important to clarify why AF In this Appendix, we explain how to actually deal with
long-range order is robust in the theory. It seems that the ajire BR of the normal (paramagnetic) stédtg [Eq. (26)] for
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Fig. A-1. (Color online) lllustration of how to obtain the band- Fig. A.2. (Color online) Energy expectation values of the normal siqte
renormalized energy ity within a single variational band parametgft  for some model-parameter sets ¢, t'/t, U/t = 12) plotted as functions
for a specific model parameter sét € 10,6 = 0.08, U/t = 12). The total  of the band parametei/t. The data plotted by light-green diamonds and
energy per site is plotted as a functiontgft (< 0). For details, see text. denoted by A correspond to the set discussed in the text (18,6-0.3, 12).
Those plotted as dark circles are identical to those shown in Fig. 16.

finite-size systems. As mentioned in Sect¥g,depends only

on the choice ofk}occ (Fermi surface) and not explicitly on rectly ont;/t, ¥ should exhibit completely flat energy as a
&k. In the thermodynamic limitl( = ), wherek is a contin- function oft;/t in A, and discontinuities at the edges of. A
uous variable{k}occ continuously changes ag or the band In Fig. A-2, we show the;/t dependence of the total energy
parameters thereiny(t, etc.) gradually vary. This means thatfor the above parameter set with light-green diamonds, along
{klocc directly depends on the band parameters. On the othaith the same quantity for other parameter sets. Because the
hand, in the finite systems we treat here, for which the avai¢ffective band dispersios} [Eq. (5)] in Wy is assumed to
ablek are discrete{k}occ (Namely¥y) is invariable in a cer- have the same form as the bare band dispeesi¢gd. (2)] 5

tain range of band parameters (&) and discontinuously the division of the areas (Afor t’/t discussed above directly
changes at the edges of the range. Generally, this range berresponds to the division ¢f/t, as also marked by Ain
comes wider for a smallek. To begin with, we illustrate Fig. A-2. The energy minimum for the above model parameter
this point assuming that theffective band is given by} in ~ set ¢'/t = —0.3) is obtained not in A(includingt,/t = —0.3)

Eq. (5). Even for this simple form afi, we believe that full butin Ay, meaning that BRE manifest themselves.

BRE are achieved in most cases. Owing to this locally flat behavior oE/t, ordinary opti-

To avoid confusion betweeti/t in H (model parameter) mization techniques that require information about the gradi-
and the variational band parameteft in Py, we start with ent ofE/t are inapplicable t&y. Here, we use another way of
the noninteracting caseJ(= 0). In this case, the exact groundoptimization. Below, we describe its outline with an illustra-
state is given by Eq. (4), in whiclk}occ is determined by the tion in Fig. A-1 for a model-parameter sdt € 10,6 = 0.08,
bare band dispersiask n Eq. (2), indicating that; =t and U/t = 12) as an example. (i) Calculate the total enelgy
ex = & for U = 0 according to variation theory. If we de- densely as a function ¢f/t for a fixed set of the other param-
crease the sole band paramatér in H from zero,{K}occis  €ters (, d, U/t) without introducing BRE, namely by putting
switched from one configuration to another at certain discrete = t’. In Fig. A-1, the E/t thus obtained are plotted with
values oft’/t. In Fig. A1, we show such evolution ¢k}o., SMall solid circles joined by a thick dashed line. We find that
for L = 10 ands = 0.08 as an example, with alternate red andE/t is described by a distinct nearly straight curve for each
blue arrows near the lower horizontal axik}occ is switched A.. (i) Each segmented curve (say in)&an be well extrap-

as olated using a first- or second-order least-squares method:
{ko}oce = {K1}oce = {K2}oce = {KaJoce = <+ (A'l) Ef(t’/t) = C(()g) + C(lg)(t,/t) + C(ZZ)(t//t)2~ (A-2)

att’/t ~ -0.107,-0.137,-0.213,-0.357,---. Let A, (¢: in-  The extrapolated curves are shown with thin dashed lines in
teger) denote the area tft where{k}occ = {Kelocc @S shown Fig. A-1 and practically coincide with the valuesBft actu-
in Fig. A1, for example, A = [-0.213 —0.137]. Note that ally calculated with{k,}occ (BRE) outside A, whose values
within each A, the ground-state wave functioky (=@y) is  are shown with open circles joined by thin dull-green curves.
unchanging but the energy changes with owing to the di- Therefore, we may substitute such extrapolated values for the
agonal hopping term. results of actual BRE calculations to save labor. (iii) The op-
Next, we consider interacting casés ¢ 0). Let the model timized energy allowing for BRE for a fixed value tft is
parameters be fixed, for example, lat= 10, § = 0.08, given by the lowest extrapolated value among the all the A
t’/t = 0.3, andU/t = 12. For such a parameter set, weFort’/t = —0.3, for example, the lowest energy is given by
need to optimizePy by adjusting the band parametgft in-  {K2}oce, @nd the improvement in energy owing to BREH/t)
dependently of’/t together with the correlation parametersis indicated by a brown arrow. We actually estimated the op-
Becausedy in Eq. (4) depends only ofk;}occ and not di- timized BRE energies oy for most model parameter sets
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vant spikes. A given configuratiofk A%, yields a plateau or
plateaus with the sarte. We determinedE,, by averagind=
in the lowest plateau and verifying that the estimated value is
smoothly connected to those obtained using other model pa-
rameter sets. Far ~ t/, the statistical fluctuations become
very large because multiplg}2F. have a value oE compa-
rable toEq,. Therefore, in this regime, we carried out up to
fifty calculations for a single model-parameter set, especially
for ¥ix.

As an alternative approach, we may optimi¥gr and
Wmix With a fixed {k}45, using the stochastic reconfiguration
method. By carrying out such operations for various values of
{K}AE, we can identify the¥ with the lowestE/t. Because the
number of choices ofk}4F. rapidly increases aks increases,
we may adopt the method of choosifigcc used for?y in
Appendix A. Anyway, the task of optimizingfar and¥nix is
much more burdensome than that ¥y.

| AF (BR4) r}{ipég
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=12
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Fig. B-1. (Color online) Evolution of the energy expectation valuéig:

obtained by VMC process using a simple linear optimization method. The

results of eight calculations successively performed are plotted in sequencel) J. G. Bednorz and K. A. Kler, Z. Phys. B54, 189 (1986).

in each of which 320 linear optimizations were carried out. The initial pa- 2) For the recent status of experimental research, see, for instance, articles

rameter values in each calculation were set to those that yielded the lowest in the special issue of J. Phys. Soc. Jghvol. 1 (2012) on “Recent

plateau energy in the previous calculations. We estimated the optimized en- developments in superconductivit”.

ergy, in this case, by averaging the final results indicated by the arrow. In3) For thet-J model, see P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod.

averaging, we exclude scattered data that are more than twice the standard Phys.78, 17 (2006); M. Ogata and H. Fukuyama, Rep. Prog. Phys.

deviation from the mean. 036501 (2008). For the Hubbard model, see, for instance, Table | in
Ref. 5.

4)

5)
through this procedure. To obtain other quantities, howeverg)
calculations using the optimized parameters are necessatry.

7)

H. Yokoyama, M. Ogata, Y. Tanaka, K. Kobayashi, and H. Tsuchiura,
J. Phys. Soc. Jp82, 014707 (2013).

T. Misawa and M. Imada, Phys. Rev9B, 115137 (2014).
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235132 (2014).

B.-X. Zheng and G. K.-L. Chan, Phys. Rev9B, 035126 (2016).

Under the upper horizontal axis in Fig:1A we show the
areas ofk,}qcc that yield the optimizedE /t with red and blue
arrows. It reveals that these areas{lof}occ with BRE often
deviate from the areas ¢{,}..c for bare cases shown near the

lower horizontal axis. Thus, in this model parameter set, the
energy reduction owing to BRE is brought about discontinu-

ously as a function of /t [see Fig. 10(b)]. In Fig. 16, we ac-
tually illustrate the above process of optimization associate
with BRE for¥Wy with L = 12,6 = 0.0833, andJ/t = 12. The
red line indicates the optimized line f#y. In this parameter,
BRE are inffective for or smal0.573 < t'/t < 0.343.

Appendix B: Details of Optimizing AF and Mixed States

In optimizing Yar and Ynix, @ similar dificulty exists in
the case ofy. Namely, if we determingk}4, according to
&,F, ast, is gradually varied, total enerdy/t discontinuously
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