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Band-Renormalization Effects on Superconductivity and Antiferromagnetism
in Two-Dimensional t-J Model
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Coexistence or exclusivity ofdx2−y2-wave superconducting (d-SC) and antiferromagnetic (AF) orders and instability
toward phase separation (PS) are reconsidered for the square-latticet-J model with the diagonal transfer (t′) term near
half filling. To reliably treat the strong correlation including the local constraint of no double occupancy, we use a varia-
tional Monte Carlo method, in which band-renormalization effect (BRE) is also incorporated. The results are compared
with those of the corresponding Hubbard model recently obtained [J. Phys. Soc. Jpn.85, 074701 (2016)]. It is found
that BRE is very effective for the AF order and greatly modifies the ground-state phase diagram in thet′-δ space (δ:
doping rate), especially for large|t′/t|, proposed by previous studies; in a wide range oft′/t (|t′/t| ≤ 0.5) and for any
underdopedδ (≲ 0.15), the AF order arises forJ/t = 0.3 similarly to the Hubbard model. In contrast with the Hubbard
model, however, thed-SC order also arises down to smallδ in a wide range oft′/t (≳ −0.2), and coexists with the AF
order even fort′/t < 0 (type-II AF regime). Furthermore, there is no instability toward PS for anyt′/t andδ for J/t = 0.3.

1. Introduction

In cuprate superconductors (SCs),1) the antiferromagnetic
(AF) orders in the insulating parent compounds rapidly van-
ish on carrier doping and thedx2−y2-wave superconducting (d-
SC) orders arise in wide ranges of doping rate (δ).2) Formerly,
many theoretical studies supported this fundamental feature
as well as other properties ofdx2−y2-wave superconductivity
(d-SC) on the basis of Hubbard-type ort-J-type models.3–12)

However, recent numerical studies on square-lattice Hubbard
(t-t′-U) models using refined techniques which simultane-
ously consider the two orders13–15)argued that AF long-range
orders prevail in wide ranges ofδ andt′/t (diagonal hopping)
or phase separation (PS) occurs fort′ ∼ 0, and as a result, the
ranges where pured-SC orders appear are limited to narrow
windows in the overdoped regime.

In a previous study,16) applying a variational Monte Carlo
(VMC) method to a strongly correlated Hubbard (t-t′-U)
model, we obtained basically the same results: A band-
renormalization effect (BRE) plays an essential role for the
stabilization of AF orders for large values of|t′/t| through re-
trieving the nesting. Consequently, states with AF orders or
PS become remarkably more stable than a pured-SC state in
the whole underdoped regime and the whole realistic range of
t′/t (Fig. 27 in Ref. 16). This result is serious in that it is ob-
tained using a variation theory, which gives an upper bound
of the exact energy. Namely, for realizing a pured-SC or-
der, breakthrough improvement is required in the triald-SC
states, notwithstanding suchd-SC states already properly de-
scribe various aspects of cuprate SCs as mentioned above. It
is important to check whether this perplexing feature is char-
acteristic of the Hubbard model.

In this context, it is significant to study the same subjects
in the t-J model,17) another key model of cuprates. Thet-J
model possibly has aspects different from the Hubbard model
for realistic values ofJ/t (∼ 0.2 – 0.5), although the two mod-
els are connected forJ/t (t/U) → 0 andδ ∼ 0.18–20) In the
studies of pure (single-order AF andd-SC) states,5–8) it has
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been known that thed-SC order is predominant and over-
comes antiferromagnetism (AF) even for very small doping
rates. Furthermore, the domain ofd-SC extends up to sizable
doping ratesδ ∼ 0.5 for negative large values oft′/t with a
moderateJ/t.21–25) The t-J model seems to have a somewhat
stronger tendency towardd-SC than the Hubbard model.

Because thet-J model works in the strong-correlation limit,
methods applicable to the present subject beyond mean-field
levels are restricted. Among others, the VMC method26) has a
crucial advantage, namely, it can treat correlation factors ex-
actly, including the local constraint of no double occupancy,
with sufficiently large systems. Thus, this method has been
often applied to the problems of (a) coexistence and exclu-
sivity of the two orders and of (b) instability toward PS.27–33)

However, the conclusions of (a) and (b) were not necessarily
unified among the studies but seemed rather scattered. Fur-
thermore, the physics underlying them has not been clarified.
The previous paper,16) addressing this subject in the Hubbard
model, showed that vital to these problems is the value oft′/t,
whose importance had been often disregarded. Here, we will
carry out a similar analysis for thet-J model.

In Table I, we summarize the conclusions as to the above
two problems of relevant VMC studies for thet-J model and
of recent ones for the Hubbard model. We add a result of the
extended Gutzwiller approximation34) as a representative of
analytic calculations that respect the local constraint. The con-
clusions are classified according tot′/t = 0 or∼ −0.3 (typical
values of hole-doped cuprates). For the simple square lattice
(t′/t = 0), all studies unanimously showed the coexistence of
the two orders, and the values of the critical doping rateδAF

are broadly similar. This feature is also common to that of the
Hubbard model. However, thet-J model with J/t ∼ 0.3 has
stability against PS, in contrast with the Hubbard model with
U/t = 12. On the other hand fort′/t ∼ −0.3, the conclusions
as to whether the two orders coexist or not and the values of
δAF largely depend on the studies. This dependence seems to
result from whether the band renormalization (BR) is properly
introduced or not.

In this paper, we study the interplay of AF andd-SC or-
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Table I. Results of interplay between the AF andd-SC orders in mixed
states are compared among relevant VMC (and extended Gutzwiller approx-
imation) studies for the square-latticet-J model and recent VMC studies
for the Hubbard model (lowest three). The upper row of the second column
shows whether (or how) BR is introduced. The total number of BR parame-
ters, if known, is entered in brackets. The lower row indicates a typical value
of J/t (or U/t) studied. The upper row of the third and fourth columns indi-
cates whether the state is coexistent or exclusive (with realized order). The
lower row indicates whether the realized state is homogeneous or phase sep-
arated, and the value ofδAF, above which the AF orders vanish, is shown in
brackets. Forδ > δAF, d-SC appears for all cases shown here.

Literature BR t′/t = 0 t′/t ∼ −0.3
(Method, Year) (J/t, U/t) (δAF) (δAF)

Ref. 34 No Coexistent —
(Ext.GA, ’03) (0.3) — (∼ 0.11)

Ref. 29 No Coexistent —
(VMC, ’99) (0.3) Homo. (∼ 0.1)

Ref. 30 No Coexistent —
(VMC, ’04) (1/3) PS (∼ 0.1)

Ref. 31 Partially Coexistent Exclusive, AF
(VMC, ’04) (0.3) — (∼ 0.1) — (∼ 0.06)

Refs. 22,32 No Coexistent Coexistent
(VMC,’06,’08) (0.2) Homo. (∼ 0.12) — (∼ 0.1)

Ref. 24 No — Coexistent
(VMC, ’09) (0.3) — (∼ 0.1)

Ref. 25 Partially (4) — Coexistent
(VMC, ’16) (0.3) Homo. (∼ 0.08)

This work Yes (8) Coexistent Exclusive, AF
(VMC, ’18) (0.3) Homo. (∼ 0.14) Homo. (∼ 0.20)

Ref. 35 No Coexistent —
(VMC, ’16) (10) PS, Homo. (∼ 0.12)

Ref. 14 Implicitly Coexistent Exclusive, AF
(m-VMC, ’14) (10) PS (∼ 0.18) Homo. (∼ 0.24)

Ref. 16 Yes (8) Coexistent Exclusive, AF
(VMC, ’16) (12) PS (∼ 0.15) Homo. (∼ 0.25)

ders in thet-t′-J model by comparing pure (AF andd-SC)
states and a mixed state of the two orders, in the framework
of VMC. Into the trial states, we introduce BR parameters in-
dependently for the AF andd-SC parts. We also take account
of nearest-neighbor correlation factors which distinguish all
patterns of bond configurations. In this way, we clarify the fol-
lowing points: (i) How the pure AF state is stabilized by BRE
and exhibits a kind of Lifshitz transition in which the loci of
pocket Fermi surfaces (FSs) switch, as seen in the Hubbard
model.16) (ii) How BRE affects the pured-SC state. (iii) How
the property of coexistence or exclusivity of the two orders
evolves ast′/t andδ are varied in the mixed state. And, we
will trace the cause of this property by comparing the behavior
between the pure states and mixed state. (iv) Whether or not
the states are stable against PS. As a summary, we construct a
phase diagram int′-δ plane using the mixed state (Fig. 21), in
order to compare with that for the Hubbard model.

This paper is organized as follows: In Sect. 2, we explain
the model and method used. In Sect. 3, we discuss BRE on
the pure AF andd-SC states. In Sect. 4, we study the inter-
play of the two orders using the mixed state. In Sect. 5, we
recapitulate this work. In Appendix A, we describe the de-
tails of optimizing the trial wave functions. In Appendix B,
we argue that the energy reduction in the AF state is primar-
ily caused by FS renormalization but not by the band form.
Preliminary results of the present study were published in a
conference proceedings.36)
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Fig. 1. (Color online) (a) Hopping processes in Hamiltonian [Eq. (2)] and
(b) those corresponding to band-adjusting parameterstη (η = 1 – 4) in trial
wave functions [Eqs. (12) and (18) – (21)]. In both panels,t is the unit.

2. Formulation

After introducing the model Hamiltonian in Sect. 2.1, we
explain the VMC method, especially, the trial wave functions
in Sect. 2.2. Relevant quantities are defined in Sect. 2.3.

2.1 t-t′-J model
We consider thet-J model on the square lattice17) with a

diagonal transfer term [Fig. 1(a)]

H = Hhop+HJ = Ht +Ht′ +HJ (1)

= −t
∑
⟨i, j⟩,σ

(
c̃†iσc̃ jσ + H.c.

)
− t′

∑
(i, j),σ

(
c̃†iσc̃ jσ + H.c.

)
(2)

+J
∑
⟨i, j⟩

(
Si · Sj −

1
4

ñi ñ j

)
, (3)

wherec̃ jσ = c jσ(1−n j−σ) is the annihilation operator that acts
in the space without double occupation,c jσ is the ordinary
annihilation operator for the Wannier state, ˜n jσ = c̃†jσc̃ jσ, and

Sj =
1
2

∑
α,β c†jασαβc jβ (σ : Pauli matrix).⟨i, j⟩ and (i, j) in the

summations in Eqs. (2) and (3) indicate the pairs of nearest-
neighbor and diagonal-neighbor sites, respectively. Thus, the
bare band dispersion is

ε̃k = −2t
(
coskx + cosky

)
− 4t′ coskx cosky. (4)

The value oft′/t depends on the kind of cuprate SCs and
is considered−0.1 (LSCO) –−0.3 (YBCO,BSCCO) for hole-
doped systems and∼ 0.3 for electron-doped systems (through
electron-hole transformation).37) According to band calcula-
tions,38,39) the existence of apical oxygen tends to increase
t′/t. We repeat that the value oft′/t plays a leading role in
the present subject. As forJ/t, we mainly discuss a typical
case for cupratesJ/t = 0.3, although we sometimes refer to
J/t dependence. The Hamiltonian Eq. (1) is connected to the
Hubbard Hamiltonian through the strong-coupling expansion
for J/t, t/U → 0 with J = 4t2/U near half filling.18) Thereby,
J/t = 0.3 corresponds toU/t = 13.3. We uset and the lattice
spacing as the units of energy and length, respectively.

2.2 Variational Monte Carlo method
A merit of the VMC method26) is the possibility of speci-

fying important factors or physics (e.g. BRE) in the system
of our interest. To this end, it is vital to construct simple
trial wave functions that capture the essence. In this study,
as many-body trial states, we use a Jastrow type,Ψ = PΦ,40)

whereP is a two-body correlation factor (projector) andΦ is
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a one-body (mean-field-type) wave function.
We take the form ofP common to all trial states,P =
PGPJ. Here,PG is the onsite projectorPG =

∏
j [1−n j↑n j↓]41)

that ensures the above local constraint. In the intersite fac-
torPJ, we consider both charge-density and spin correlations
between nearest-neighbor sites:PJ = PhPS. For the charge-
density part, we use an interhole correlation,

Ph =
∏
⟨i, j⟩

[
1− (1− α) hih j

]
(5)

with h j = (1− ñ j↑)(1− ñ j↓). For the spin-dependent part, we
use the form,

Ps =
∏
⟨i, j⟩

[
1− (1− β1) (ñi↑ñ j↑ + ñi↓ñ j↓)

]
×

[
1− (1− β2) (ñi↑ñ j↓ + ñi↓ñ j↑)

]
. (6)

In Eqs. (5) and (6),α, β1 andβ2 are variational parameters.
Ph is effective, especially, in a highly doped regime.Ps plays
a corrective role for the (often overestimated) AF order. Us-
ing Ph andPs, we can assign distinct weights to all different
nearest-neighbor bond configurations.

We turn to the one-body partΦ, into which BRE33,42) is in-
troduced. The forms used in the previous study16) are applied
to the present cases. We start with the normal (paramagnetic)
state (Fermi Sea),

ΦN =
∏
{k}occ, σ

c†k,σ|0⟩, (7)

where{k}occ indicates the set of occupied wave-number points
of k ∈ kF. Although there is no explicit variational parameter
in ΦN, we have to determine{k}occ variationally as in the AF
case when BRE is considered (see below and Appendix A).

For the (commensurate) AF state, we apply the form of
Hartree-Fock (HF) solution fort′ = 0 at half filling, in which
case the nesting condition is completely satisfied, to the other
cases oft′/t andδ in a sense of variation theory:

ΦAF =
∏
{k}occ, σ

a†k,σ|0⟩, (8)

where,a†k,σ is an AF quasiparticle operator given as

a†k,σ = αkc†k,σ + sgn(σ) βkc†k+Q,σ, (9)

a†k+Q,σ = −sgn(σ) βkc†k,σ + αkc†k+Q,σ. (10)

In Eqs. (9) and (10),k is taken in the folded AF Brillouin zone
with the lower-band energy dispersion,

EAF
k =

U
2
−

√
γ2

k + ∆
2
AF, (11)

γk = −2t(coskx + cosky), (12)

Q = (π, π), sgn(σ) = 1 (−1) forσ =↑ (↓), and

αk (βk) =
1
√

2

√√√
1− (+)

εAF
k(

εAF
k

)2
+ ∆2

AF

. (13)

∆AF corresponds to the AF gap in the sense of HF theory.43) In
Eq. (13), allowing for BRE (explained shortly), we writeεAF

k
for the energy dispersion, instead ofγk . The choice of{k}occ,
namely FS, is included in the BR processes ofΨN, ΨAF and
Ψmix, and is not easy operation for finite-size systems.11) We

Table II. Comparison of form ofεΛk and choice of{k}occ for band renor-
malization in mixed states among related studies. The second column (d-SC)
shows the energy dispersion to be optimized in the one-bodyd-SC part and
the third column (AF) the same but in the AF part. In the fourth column, the
total number of band parameters are entered. The rightmost column indicates
how to choose the occupiedk-points in the AF part.

Literature d-SC AF Param. {k}occ in AF part

Ref. 33 εSC
k γk 4 Order ofγk

Ref. 25 εSC
k εAF

k ≡ ε
SC
k 4 Order ofγk

Ref. 16 εSC
k εAF

k 8 Order ofεAF
k

Present work εSC
k εAF

k 8 OptimizingΨmix

describe, in Appendix A, how we deal with the optimization
of {k}occ in this study.ΦAF is reduced toΦN for ∆AF = 0.

The puredx2−y2-wave singlet pairing (BCS) state of a fixed
electron numberN is given by44)

Φd =

∑
k

ϕ(k) c†k↑c
†
−k↓


N
2

|0⟩, (14)

where

ϕ(k) =
∆k

εSC
k − µ +

√
(εSC

k − µ)2 + ∆2
k

, (15)

with ∆k = ∆d(coskx−cosky). ∆d andµ are variational param-
eters corresponding to thed-SC gap and chemical potential.
In εSC

k , BRE is introduced.Φd is reduced toΦN for ∆d = 0
andµ = µ0 (µ0: the non-interacting chemical potential).

The mixed state, which can simultaneously haved-SC and
AF orders,27–29)are constructed by replacing the bare electron
operatorc†k,σ in Eq. (14) by the AF quasiparticle operatora†k,σ
in Eqs. (9) and (10) as28)

Φmix =

∑
k

ϕ(k) a†k↑a
†
−k↓


N
2

|0⟩. (16)

Φmix is reduced to the pure states in certain limits, namely,Φd

for ∆AF = 0 andΦAF for ∆d = 0 andµ = µ0.
For introducing BRE intoΦAF, Φd andΦmix, we extend

the band dispersionsεAF
k in Eq. (13) andεSC

k in Eq. (15) by
including tight-binding hopping terms up to three-step pro-
cesses shown in Fig. 1(b) as,

εΛk = γk + ε
Λ
1 (k) + εΛ2 (k) + εΛ3 (k) + εΛ4 (k), (17)

with Λ = SC or AF and

εΛ1 (k) = −4tΛ1 coskx cosky, (18)

εΛ2 (k) = −2tΛ2 (cos 2kx + cos 2ky), (19)

εΛ3 (k) = −4tΛ3 (cos 2kx cosky + coskx cos 2ky), (20)

εΛ4 (k) = −2tΛ4 (cos 3kx + cos 3ky). (21)

These band-adjusting (variational) parameterstΛη /t (η = 1–
4) are independent of the model parametert′/t in H and of
tp/t used for determining{k}occ (see Appendix A). Thus, we
have four band parameters inΦAF andΦd, and eight inΦmix.
In Φmix, it is crucial to optimizetSC

η and tAF
η , independently.

Actually, for the Hubbard model,16) only tSC
1 /t is effective in

thed-SC part, buttAF
η /t up toη = 4 become important for the

nesting in the AF part. Furthermore, there is room for how to
choose{k}occ in the AF part. In Table II, we compare the ways
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of introducing BRE into mixed states among related studies.
In this work (the last row), we taketAF

η /t and tSC
η /t as eight

independent band parameters, and determine{k}occ so as to
minimize the total energy with respect toΨmix, instead of us-
ing some guiding energy dispersion. Therefore, the present
way of introducing BRE comprehends the other ways in Ta-
ble II as special cases. The independence oftAF

η /t and tSC
η /t

is, in particular, important; otherwise, qualitatively different
results are sometimes derived,25,33)as shown in Table I above
and Table IV in Ref. 16. We describe the details of optimizing
{k}occ in this work in Appendix A.

Variational expectation values of̂O with respect toΨΛ (=
PΦΛ; Λ = N, AF, d, and mix),

⟨Ô⟩Λ =
⟨ΨΛ| Ô |ΨΛ⟩
⟨ΨΛ|ΨΛ⟩

(22)

are numerically estimated using a VMC method26) for finite
systems ofNs = L × L sites (L = 10 – 24) with the periodic-
antiperiodic boundary conditions. The number of samples for
computing⟨Ô⟩ are typically 2.5 × 105. Optimization of the
variational parameters except fortp/t (see Appendix) is per-
formed using the stochastic reconfiguration method.45)

2.3 Physical quantities
Here, we define quantities often referred to. The total en-

ergy per site of the stateΛ is written asEΛ = ⟨H⟩Λ/Ns. As
the AF order parameter, staggered magnetization,

m=
2
Ns

∑
j

∣∣∣∣eiQ·r j ⟨Sz
j⟩
∣∣∣∣ , (23)

is used, whereQ is the AF nesting vector (π, π). m becomes
unity for the full moment. As the indicator ofd-SC order, we
use the real-spaced-SC correlation function for the nearest-
neighbor-site pairing,Pd ≡ Pd(r∞) with r∞ = (L/2, L/2) and

Pd(r ) =
1
Ns

∑
i

∑
τ,τ′=x̂,ŷ

(−1)1−δ(τ,τ
′)
⟨
∆†τ(Ri)∆τ′ (Ri + r )

⟩
, (24)

wherex̂ (ŷ) denotes the lattice vector inx (y) direction,δ(τ, τ′)
indicates the Kronecker delta, and∆†τ(Ri) is the creation op-
erator of a nearest-neighbor singlet pair at siteRi ,

∆†τ(Ri) = (c†i↑c
†
i+τ↓ + c†i+τ↑c

†
i↓)/
√

2. (25)

To evaluate the contribution of AF correlation, we display the
q = Q element of the spin structure factor,

S(q) =
1
Ns

∑
i j

eiq·(Ri−R j )
⟨
Sz

i S
z
j

⟩
. (26)

For studying the electronic state, we use the momentum dis-
tribution function,

n(k) =
1
2

∑
σ

⟨c†kσckσ⟩, (27)

in which availablek points are shifted byπ/L in y direction
owing to the boundary conditions used.

3. Results of Pure States

In Sects. 3.1 and 3.2, we discuss noteworthy aspects of the
pured-SC stateΨd and pure AF stateΨAF, respectively.
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Fig. 2. (Color online) The optimized band parameterstSC
η ≡ tη (η = 1–4)

in Ψd are depicted as a function of doping rate fort′/t = −0.3. The values of
tη without BR are indicated by dotted lines in coordinate colors.

Table III. Energy improvement owing to band renormalization∆EBR
Λ
/t

(Λ =AF, SC) [Eq. (28)] in the pure states for three typical values oft′/t
and doping rate.J/t = 0.3 andL = 10. For comparison, we show the corre-
sponding data of the Hubbard model withU/t = 12 borrowed from Ref. 16.
The last digit of each has some error.

States t′/t \ δ 0.0 0.08 0.16
−0.3 0.0009 0.0017 0.0038

d-SC 0.0 0.0001 0.0002 0.0005
+0.3 0.0009 0.0001 0.0001
−0.3 0.0601 0.0405 0.0251

AF 0.0 0.0001 0.0009 0.0010
+0.3 0.0586 0.0307 0.0087

−0.3 0.0019 0.0004 0.0001
d-SC (Hubbrad) 0.0 0.0000 0.0002 0.0005

+0.3 0.0001 0.0003 0.0005
−0.3 0.1653 0.0622 0.0220

AF (Hubbrad) 0.0 0.0058 0.0102 0.0020
+0.3 0.1653 0.0603 0.0108

3.1 d-wave superconducting state
In a previous study16) for the Hubbard model, it was found

that BRE inΨd affects only very slightly physical quanti-
ties as well as energy for largeU/t and |t′/t|, compared to
ΨAF, although the renormalization oftSC

1 /t in Ψd is never
small.21,23,46) In Fig. 2, we plotδ dependence of the opti-
mized band parameters of thed-SC states for thet-J model
with t′/t = −0.3. For δ ∼ 0 and in the overdoped regime
(δ ≳ 0.16), t1/t is greatly renormalized, namely, going away
from −0.3; the large BR in the latter regime is absent in the
Hubbard model (See Fig. 3 in Ref. 16). Sincet2/t linearly in-
creases withδ, BR becomes large (t2/t goes away from 0) in
the overdoped regime. This behavior contrasts with that for
the Hubbard model, wheret2/t substantially vanishes for any
δ. For t′/t = 0.3 (not shown), more marked BR exists int1/t
(−0.1 ≲ t1/t ≲ 0.1) for δ ≲ 0.2, andt2/t ∼ −0.05 for mostδ.
Thus, the renormalization oft1/t andt2/t becomes apprecia-
ble inΨd for thet-J model.

In Table III, we show the energy improvement owing to
BRE for thet-J model:

∆EBR
Λ = EΛ(no BR)− EΛ, (28)

whereEΛ(no BR) is the energy per site of the stateΛ [Λ =
AF or d] calculated without BR, namely, using the band pa-
rameterstΛη (andtp for AF) fixed at the values inH . Notable
features are found in∆EBR

Λ
: (i) Both for the d-SC and AF

4
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Fig. 3. (Color online) Doping rate dependence ofd-wave SC correlation
functionPd calculated usingΨd for various values oft′/t (andL).
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Fig. 4. (Color online) The momentum distribution function of the pured-
SC state is drawn along the path ofk: (0,0)-(π, 0)-(π, π)-(0,0). Results for
various values oft′/t are drawn in blue. For comparison, corresponding re-
sults of the normal (paramagnetic) state are added in green.J/t = 0.3.

states, BRE is almost ineffective fort′/t = 0. (ii) Energy im-
provement in thed-SC state is small for anyt′/t andδ, despite
the above large BR int1/t andt2/t. (iii) Energy improvement
in the AF state is one or two orders of magnitude larger than
in the d-SC state fort′/t = ±0.3. These features of thet-J
model is common to those of the Hubbard model.16) Owing
to the feature (i), the results of previous studies fort′/t = 0
in Table I are almost identical despite whether BRE is intro-
duced or not. The feature (ii) indicates that various properties
ofΨd are almost unchanging by BRE. The feature (iii) will be
discussed later in Sect. 3.2. These features are identical with
those of the Hubbard model.

We notice in Table III thatδ dependence of∆EBR
d is oppo-

site between thet-J and Hubbard models fort′/t = −0.3, al-
though its magnitude is not large. This feature stems from the
above contrastive behavior oft1 andt2, and is probably related
to the prevalence ofd-SC order for large negativet′/t in the
t-J model.21–25)This prevalence is confirmed byPd [Eq. (24)]
shown in Fig. 3 and is hardly changed by BRE; the range of
d-SC seems very wide (probably up toδ = 0.5), as compared
to the Hubbard model.11) The dome-likeδ dependence ofd-
SC correlation has been well-known since early studies of the
t-J model.6)

Shown in Fig. 4 isn(k) for various values oft′/t. As a fea-
ture ofdx2−y2-wave symmetry, a Fermi point exists in the nodal
direction near (π/2, π/2),9) whereas a gap opens near the anti-
nodal (π,0) in contrast with the case ofΨN. Note that, ast′/t
is varied, the behavior near the antinodal markedly changes,
but is almost unchanging for the otherk. Because the prop-
erty ofd-SC appreciably changes witht′/t as shown in Fig. 3,
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Fig. 5. (Color online)J/t dependence of the spin correlation function at
q = (π, π) (green) and thed-SC correlation function (blue) calculated using
Ψd are compared for fourt′/t. The figures of the symbols are common to
S(q) andPd.
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Fig. 6. (Color online)t′-δ phase diagram constructed by comparing ener-
gies of pure AF andd-SC states. For large|t′/t|, the AF domain is likely to
expand to the large-δ direction for technical reasons.48) The bold gray dashed
line indicate a similar AF-d-SC boundary determined using the data without
BR for the Hubbard model ofU/t = 12.11,16) The difference of models does
not affect the aspect for large|t′/t|.

the electrons withk near antinodal must play a leading role
for d-SC.16) This feature is common to that of the Hubbard
model.11)

We turn to the relation between thed-SC order and AF
correlation. In Fig. 5, we plotPd and S(q) [Eq. (26)] with
q = Q = (π, π) as a function ofJ/t. As the spin exchange
interactionJ/t increases,Pd increases faithfully according to
S(Q) for any t′/t, meaning that the driving force ofd-SC is
the AF exchange interaction. Therefore, the scattering process
(or a vector connecting FSs) ofQ comes to play a crucial role
for raisingd-SC.17,47)

These properties are consistent with the results of previous
studies. We will discuss the stability against PS ofΨd together
with the case ofΨAF in Sect. 3.2.

3.2 Antiferromagnetic state
As mentioned in Sect. 3.1 [feature (iii)], BRE is highly ef-

fective in reducing the energy of the AF state for large|t′/t|.
This energy reduction is primarily caused by the FS renor-
malization (choice of{k}occ) but not by the band formεAF

k
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Fig. 8. (Color online) The momentum distribution function calculated us-
ing metallic (δ > 0) ΨAF is shown along the same path as in Fig. 4. The
cases of varioust′/t are compared. The data of type-I (II) AF state are shown
with red (blue) symbols. The Lifshitz point ist′L/t ∼ 0. The red (blue) arrow
indicates the loci of pocket Fermi surfaces of the type-I (type-II) AF state.

itself, as explained in Appendix B. The energy improvement
owing to BRE∆EBR

AF [Eq. (28)] is one or two orders of mag-
nitude larger than∆EBR

d , as shown in Table III. Thereby, the
t′-δ phase diagram constructed within the the pure states is
noticeably changed, as shown in Fig. 6. The bold gray dashed
line indicates the boundary between AF andd-SC in the case
without BRE for the corresponding Hubbard case. The AF
range shrinks and vanishes for large negativet′/t. In contrast,
by introducing BRE, the AF range expands as|t′/t| increases
especially in the negative-t′/t side.48) Incidentally, it is known
for the t-J model witht′/t = 0 that the stable state is rapidly
switched from AF tod-SC on carrier doping even without
BRE.8) This feature is unchanging by BRE and contrasts with
the Hubbard case (gray line). Anyway, this result with BRE is
contrary to the common knowledge that the AF state is rapidly
destabilized on doping and thed-SC order appears for hole-
doped cases (t′/t < 0).

Next, we study the (expected) Lifshitz transition in the
metallic (doped) AF states, which corresponds to what was
found in the Hubbard model.16) At half filling, an insulat-
ing AF state is realized, because thet-J model is reduced to
the Heisenberg antiferromagnet.49,50) This AF is preserved at
least for |t′/t| ≤ 0.5, because the nesting condition is com-
pletely retrieved owing to BRE. When carriers are doped,
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Fig. 9. (Color online) Doping-rate dependence of the momentum distribu-
tion function ofΨAF for J/t = 0.3. In (a), we plot the results of typicalt′/t
values of type-I (red) and type-II (blue) AF states for three values of doping
rate. The red (blue) arrow indicates the locus of pocket Fermi surface of type-
I (type-II) AF. In (b), we plot the results fort′/t = 0.3 (type-I) in a wide range
of doping rate up to the PM regimeδ > δAF (∼ 0.20, pale color). The arrow
indicates a Fermi surface appearing for the PM state. Shown in the inset isδ

dependence of the staggered magnetization of the same systems.

this insulating AF state changes over to metallic with FSs.
In Fig. 7, we showt′/t dependence of total energy and stag-
gered magnetization for three doping rates (andL). We find
cusps (or small discontinuities inm) in both quantities at
t′ = t′L ∼ 0, suggesting some transition. If this anomaly in-
dicates the aforesaid Lifshitz transition, the loci of the FSs
should be switched whent′ passes throught′L . To confirm
it, we show, in Fig. 8, the momentum distribution function
[Eq. (27)] atδ = 0.083 for various values oft′/t. We find a
pocket FS (discontinuity) aroundk = (π, 0) [(π/2, π/2)] for
t′ > t′L [t′ < t′L ]; the loci of the pocket FS suddenly changes at
t′ = t′L . This behavior is basically the same as what was found
for a strongly correlated Hubbard model.16) We named the
former (latter) state the type-I (type-II) AF state. Related phe-
nomena or behavior in thet-J model as well as the Hubbard
model have been studied since the early days of cuprates51,52)

and later in various studies53) in connection with the differ-
ence in ARPES spectra between electron-doped54) and hole-
doped55) cuprates. Furthermore, this difference greatly affects
whether AF andd-SC orders are coexistent or exclusive.16)

We confirmed that, even ifJ/t is varied, the abovet′/t de-
pendence ofn(k) is preserved as far asJ < JPS, whereJPS

(∼ 2.5t for δ ∼ 0.08 – 0.20) is the transition point to PS (not
shown).56) In Fig. 9, we show theδ dependence ofn(k). In
(a), we find that the loci of pocket FS are unchanging when
δ is varied, regardless of the type of AF, I (t′/t = 0.3) or II
(t′/t = −0.3). Shown in (b) are the data (t′/t = 0.3, type-I)
for a wider range ofδ up to∼ 0.28 in the PM area. The lo-
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Fig. 10. (Color online)t′-δ diagram according to Fermi-surface topology
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symbols the type-II AF. The symbols in pale colors indicate the PM cases
(m = 0), in which the occupiedk-points are the same as those in the AF
states of corresponding types (andL). The boundary between blue and red
(dark and pale colors) indicatestL/t (δAF).

cus of the pocket FS is preserved until the AF order vanishes
at δ = δAF ∼ 0.2 (seem in the inset). The pocket FS of the
AF state changes to a global FS centered atk = (0,0) of the
PM state atδ = δAF, but {k}occ is identical betweenΦAF and
ΦN. The evolution ofn(k) according toδ is similar in type-II
cases.

As a summary of FS topology, we construct a diagram of
the types of AF order inΨAF and of{k}occ in ΨN in the t′-δ
space (Fig. 10). The Lifshitz pointt′L/t (the boundary between
red and blue) slightly shifts to a smaller value asδ increases.
Incidentally, in the Hubbard model, the Lifshitz point is situ-
ated at−0.1 < t′L/t < 0 for any model-parameter set.16) Note
that the AF order is stable in the whole underdoped regime
(δ ≲ 0.16) for anyt′/t.

Finally, we discuss the intrinsic stability against PS ofΨAF.
Following the previous study,16) we judge this property by the
sign of charge susceptibilityχc,

1
χc
=
∂2E(δ)
∂δ2

=
E(δ + ∆δ) + E(δ − ∆δ) − 2E(δ)

(∆δ)2
. (29)

For χc > 0 (χc < 0), the state is stable against (unstable to-
ward) PS. We found thatδ dependence of the energy ofΨAF

is fitted well by the parabolic form

E(δ) ≃ c0 + c1δ + c2δ
2, (30)

for δ < δAF (except in theδ → 0 limit). Therefore, we have a
unique valueχc = c−1

2 in the AF phase. In Fig. 11, the values
of 1/χc thus estimated are plotted in red as a function oft′/t
for L = 10 and 12.χc of ΨAF for J/t = 0.3 is positive for any
t′/t, in contrast with that of the Hubbard model withU/t = 12
(gray symbols), which becomes negative aroundt′/t = 0. The
AF state is always stable against PS forJ/t = 0.3.

We mentionJ/t dependence of this property. In Fig. 12(a),
we showδ dependence of the two energy elementsEhop =

⟨Hhop⟩/Ns andEJ = ⟨HJ⟩/Ns of ΨAF for J/t = 0.3. For any
t′/t, Ehop/t is downward-convex andEJ/t is concave; the con-
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Fig. 11. (Color online) Inverse charge susceptibilities of pure AF (red) and
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data of the AF state for the Hubbard model withU/t = 1216) (gray) are
added. The horizontal dash-dotted line (1/χc = 0) is the boundary of stability
against PS.
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vexity of total energy, namely, stability against PS stems from
the hopping energy. BecuaseEJ is the factor of instability to-
ward PS,ΨAF will become unstable asJ/t increases andEJ

becomes predominant. We would like to address this subject
again elsewhere.

At this opportunity, we discuss the stability against PS of
other states. In Fig. 11, we also plot 1/χc of Ψd in blue. Be-
causeχc is always positive,Ψd is stable against PS in the
range shown. This property is the same as that in the Hubbard
model withU/t = 12.16) In Fig. 12(b), we showδ dependence
of the two energy elements. Since bothEhop and EJ exhibit
a tendency similar to that ofΨAF in Fig. 12(a),Ψd will also
phase separates at a largeJ/t. For the mixed state, we estimate
1/χc for eachδ for J/t = 0.3 using the expression of finite
differences in Eq. (29), because the quadratic fit ofE(δ) is de-
teriorated by the existence of subdivided domains [(1)–(4)],
as will be discussed in Sect. 4. Anyway, we find that 1/χc > 0
holds for anyδ (not shown), so thatΨmix is also stable against
PS.

4. Mixed State of AF andd-SC Orders

In this section, we study the interplay of AF andd-SC or-
ders in the mixed stateΨmix. We start with the energy differ-
ence between the two pure statesΨAF andΨd:

∆E = Ed − EAF. (31)

In Fig. 13,δ dependence of∆E/t for J/t = 0.3 is shown for
various values oft′/t (L = 10 and 12). Note that there exist
cases in whichd-SC is more stable than AF (∆E/t > 0) in the
underdoped regime (δ <∼ 0.16), in contrast with the Hubbard
model withU/t = 12.16) We can divide theδ-t′ space into four
domains (categories) according to

(1) EAF (type-I) < Ed

(2) EAF (type-II) < Ed

(3) Ed < EAF (type-I)
(4) Ed < EAF (type-II)

when the AF and/or d-SC orders arise. This classification is
convenient to understand the behavior of coexistence or ex-
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Fig. 15. (Color online) Contour maps of momentum distribution function
n(k) of (a)ΨAF, (b) Ψd, and (c)Ψmix for (t′/t, δ) = (0.2,∼ 0.08), a typical
case of category (1) [EAF (type-I) < Ed], in the first Brillouin zone. The
arrow in (a) indicate theQ vector connecting two pocket FSs.

clusivity of the two orders inΨmix. Let us focus on the cases
of δ = 0.08, because all the above categories (1)–(4) appear.

First, we check whether the two orders coexist or not in
each category. In Fig. 14(a), we depictδ dependence ofPd and
m calculated using the pure stateΨd andΨAF, respectively.
Shown in Fig. 14(b) are the same quantities simultaneously
calculated using the mixed stateΨmix. In (a), bothPd andmat
δ = 0.08 (marked with a ring) are finite for anyt′/t, indicating
that each order can arise as a single order for anyt′/t if the
counter order does not arise. And the values of bothPd and
mare almost constant with respect tot′/t. In (b), however,Pd

vanishes fort′/t = −0.3 with m almost unchanging, whereas
Pd is almost unchanging for other values oft′/t butm tends to
be suppressed, especially, fort′/t = −0.1. Thus, we find that
in the regime of type-II AF [t′/t ≲ 0, categories (2) and (4)],
the AF andd-SC orders tend to exclude each other, whereas
in the regime of type-I AF [t′/t ≳ 0, categories (1) and (3)],
the two orders are likely to coexist. This is the same tendency
as that of the Hubbard model.16)

Before studying the features of each category, we introduce
common terminologies and an empirical law. IfEA < EB (A,
B=AF or d-SC) for the pure states, we call the order A (B)
the leading (subordinate) order. In all categories (1)–(4), the
leading order necessarily arises in the mixed stateΨmix, if the
leading order arises in the pure state with the same model
parameter set (t′/t, δ).

In category (1) [e.g., (t′/t, δ) = (0.2,0.08)], the leading and
subordinate orders are the type-I AF andd-SC, respectively.
According to the above law, the AF order of type-I arises in
Ψmix; the problem is whether thed-SC order can simultane-
ously arise or not. Actually, thed-SC order coexists with the
AF order inΨmix as in Fig. 14(b). Let us consider the mech-
anism of the coexistence. Figure 15 shows the contour maps
of n(k) for the three kinds ofΨ. As described in Sect. 3.2,
the pure AF state (left panel) has pocket FSs near antinodal
[(±π,0), (0,±π)] and exhibits a gap in the other region ofk.
In the pured-SC state (middle panel), a SC gap opens except
in the nodal directions (ky = ±kx), where Fermi points appear
near (±π/2,±π/2). As mentioned in Sect. 3.1 and in the pre-
vious paper,16) the occurence ofd-SC as the subordinate order
requires the FSs which are connected with the scattering vec-
tor Q = (π, π) in the leading-order (AF) state, especially, near
antinodal owing to the largestdx2−y2-wave gap and density of
state. In category (1), the pocket FSs in Fig. 15(a) meet this
requirement. Consequently, thed-SC order arises inΨmix and
the d-SC gap opens at the loci of pocket FS near antinodal.
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Fig. 14. (Color online) Doping-rate dependence of order parameters ofd-SC (Pd, left axis) and AF (m, right axis). In (a),Pd (m) is calculated using the pure
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Fig. 16. (Color online) Contour maps similar to Fig. 15 but for (t′/t, δ) =
(−0.3,∼ 0.08), a typical case of category (2) [EAF (type-II) < Ed].
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Fig. 17. (Color online) Contour maps similar to Fig. 15 but for (t′/t, δ) =
(0.1,∼ 0.08), a typical case of category (3) [Ed < EAF (type-I)].

The resultant stateΨmix comes to have both orders and be-
comes a fully gapped state, as shown in Fig. 15(c).

In category (2) [e.g., (t′/t, δ) = (−0.3,0.08)], because the
leading order is AF, the type-II AF order arises inΨmix. In
this case, the loci of FSs inΨAF are in the nodal directions
as shown in Fig. 16(a); a scattering vectorQ to create the
d-SC order cannot be placed between two antinodals. As a
result, thed-SC order does not arise, and the resultant state
Ψmix remains the pure AF state [Fig. 16(c)]. Namely, thed-
SC order is excluded. The mechanisms in categories (1) and
(2) are basically the same as those for the strongly correlated
Hubbard model.16) Comparing with Ref. 25 (See Tables I and
II), we notice that the independence oftAF

η andtSC
η is crucial

for this exclusivity.
In category (3) [e.g., (t′/t, δ) = (0.1, 0.08)], thed-SC or-

der necessarily appears, because it is the leading order. In this
case, the situation of FSs ofΨAF andΨd [Figs. 17(a) and
17(b)] is similar to category (1). Therefore, the two orders
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Fig. 18. (Color online) Contour maps similar to Fig. 15 but for (t′/t, δ) =
(−0.1,∼ 0.08), a typical case of category (4) [Ed < EAF (type-II)].

are ready to coexist inΨmix by using different parts ofn(k),
resulting in a full gap as shown in Fig. 17(c). Because the
leading order isd-SC in category (3), the subordinate order
AF is weakened to some extent. This tendency contrasts with
that of category (1).

In category (4), the leading order isd-SC, and the FS in
ΨAF is type-II. The situation ofn(k) in ΨAF andΨd [Fig. 18]
is similar to that of category (2) [Fig. 16]. Therefore, the two
orders tends to exclude each other, and the subordinate AF
order is weakened (δ = 0.08) or removed for high doping rates
in Ψmix as in Fig. 14(b). Consequently,n(k) of Ψmix becomes
akin to n(k) of Ψd as seen in Figs. 18(b) and 18(c). A point
different from category (2) is that the subordinate order (AF)
tends to be excluded not completely inΨmix. This is probably
because the nesting condition to be satisfied for the AF order
is less strict than the condition ford-SC.

The above aspect of interplay between the AF andd-SC
orders is more clearly revealed inJ/t dependence ofPd and
m. In the following, we focus on the cases ofδ = 0.08. We
start with the type-I regime [t′/t ≳ 0, categories (1) and (3)].
Shown in Figs. 19(a) isJ/t dependence of the energy differ-
ence between the two pure states∆E [Eq. (31)]. As J/t in-
creases,∆E/t becomes negative atJ0/t (∼ 0.2 for t′/t = 0.1,
∼ 0.55 for t′/t = 0.2), where the stable state switches from
AF to d-SC. Shown in Fig. 19(b) isJ/t dependence ofPd and
msimultaneously measured usingΨmix. As J/t increases from
zero, bothPd andm rapidly increase and exhibit no anomaly
near J = J0; some inflection atJ/t ∼ 0.15 not only for
t′/t = 0.1 but for 0.2 probably reflects the rapid variation of
the states. Note that the subordinate order never vanishes both
for J < J0 (Pd) and J > J0 (m). Thus, in the type-I regime,
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Fig. 19. (Color online) (a) The energy difference between the two pure
states [Eq. (31)] and (b) the order parameters calculated usingΨmix are plot-
ted as functions ofJ/t for typical values oft′/t in the type-I AF regime. As
guides, the points where∆E/t crosses zero (J0/t) are indicated by the gray
pentagons and open triangles fort′/t = 0.1 and 0.2, respectively. The regimes
of J < J0 andJ > J0 belong to categories (1) and (3), respectively, as shown
by arrows for eacht′/t.

the two orders tend to coexist.
In Fig. 20,∆E [in (a)], Pd andm[in (b)] are similarly shown

for the type-II regime (t′/t ≲ 0). In contrast with the type-I
cases, the behavior of bothPd and m anomalously changes
nearJ = J0. For J ≲ J0 [category (2)], the subordinated-
SC order is completely suppressed by the leading AF order.
For J ≳ J0, [category (4)] the leadingd-SC order suddenly
increases and the subordinate AF order drops nearJ = J0. In
this regime, substantial magnitude ofm is preserved inΨAF.
Anyway, in the type-II regime, the two orders tend to exclude
each other.

As a summary, we construct at′-δ phase diagram of AF
and d-SC orders forJ/t = 0.3 using the mixed stateΨmix

(Fig. 21). Compared to the corresponding phase diagram of
the Hubbard (t-t′-U) model forU/t = 12 (Fig. 27 in Ref. 16),
the aspect of AF is quite similar, but the aspect ofd-SC is dif-
ferent in that its area greatly expands from a part of type-II
area to a large range of type-I area. And that thed-SC or-
der coexists with the AF order even in the type-II area. An-
other characteristic point is that there is no area where a state
is unstable toward PS. The behavior ofχc > 0 in Ψmix (cf.
Sect. 3.2) coincides with previous results.25,32)

When we consider the correspondence with the Hubbard
model withU/t = 12, the valueJ/t = 0.3 seems too large in
that thed-SC order excessively appears, but too small in that
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Fig. 20. (Color online) The same quantities as in Fig. 19 are plotted but for
the values oft′/t in the type-II AF regime:t′/t = −0.1 and−0.3. The regimes
of J < J0 andJ > J0 belong to categories (2) and (4), respectively.

Para

AF 
Type-II

AF 
Type-I

d-SC

Fig. 21. Phase diagram of AF andd-SC orders int′-δ space constructed
usingΨmix for J/t = 0.3. The AF order exists under the bold red curve
(guide line), and thed-SC order appears in the area between the two bold
blue curves. Solid (open) symbols indicate the boundary points determined
using the systems ofL = 12 (10). In the whole area, all states are stable
against PS.

PS does not occur. The correspondence is not simple. This is
possibly because the three-site (pair-hopping) andJ′ terms are
disregarded in the model. Anyway, in the context of cuprates,
the main problem remains—why the robust AF order survives
up to high doping rates in theory.
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5. Summary

As an extension of previous work for the Hubbard
model,16) we studied band-renormalization effects (BRE) on
the interplay between AF andd-SC orders in thet-t′-J model,
which is expected to more favor thed-SC order than the Hub-
bard model. To reliably treat strong correlation of thet-J
model, a VMC method was used. We mainly discussed the
case ofJ/t = 0.3 realistic values for cuprate SC. We summa-
rize the main results below.

(i) BR modifies the properties ofd-SC only slightly but
greatly stabilizes the AF state, especially, for large values
of |t′/t| (Table III). Consequently, thet′-δ phase diagram is
largely modified; the AF order prevails in almost whole un-
derdoped range (Fig. 21), similarly to the Hubbard case.

(ii) The metallic AF order forδ > 0 in ΨAF is classified
into two types according tot′ > t′L (type-I) or t′ < t′L (type-
II), where t′L/t (∼ 0) is a Lifshitz transition point (Fig. 10).
As t′/t decreases, the loci of the pocket Fermi surface switch
at t′ = t′L from antinodal [∼ (π,0)] to the nodal directions
[∼ (π/2, π/2)]. This distinction of AF type plays a crucial role
for coexistence/exclusivity of the AF andd-SC orders inΨmix.
The two orders tend to coexist (exclude each other) in the
area of type-I (II) AF for the same reason as in the Hubbard
model,16) in short, compatibility of the electronic states.

(iii) In contrast with the Hubbard model withU/t = 12,
the pured-SC state becomes more stable than the pure AF
state in the underdoped regime (δ ≲ 0.16) for small values
of |t′/t|, namely,d-SC becomes the leading order. As a result,
it is convenient for discussing coexistence/exclusivity that the
t′-δ space is divided into four domains (categories) according
to whether or notEAF < Ed in addition to whether or not
t′ < tL .The area of coexistence comes to appear in the regime
of type-II AF (−0.2 ≲ t′/t ≲ 0), besides widely in the type-I
regime (t′/t > 0) (Fig. 21).

(iv) For J/t = 0.3, any state considered here is stable
against PS (Fig. 11), in contrast with for the Hubbard model
with U/t = 12, where states with the AF order is unstable
toward PS neart′/t = 0. However, from analysis of energy
components, both AF andd-SC states probably become un-
stable toward PS for larger values ofJ/t.

On the basis of (i) and (iii), we repeat that the problem of
coexistence/exclusivity largely depends on the value oft′/t
and BRE should be properly introduced fort′/t ∼ ±0.3 (Ta-
ble I). Regarding (iv), PS in thet-J model is a long-standing
problem. We will reconsider it in another publication. We con-
centrated on the interplay between the AF andd-SC orders; it
is important to study interplay among other low-energy states
such as staggered-flux3,57,58)and striped states.59)

The tendency toward predominant AF long-range orders
has been reported not only for the single-band models dis-
cussed above but also for thed-p model.60,61) In addition to
this predominant AF, some results are inconsistent with the
behavior of cuprates: For instance, except for the multilay-
ered systems,62) the AF andd-SC long-range orders do not
coexist and the AF states are always insulating. These points
suggest that the uniform models are possibly insufficient to
describe cuprate SCs. One possibility for reconciling the in-
consistency with experiments is that some disorders such as
the impurity potential of carrier dopants, which is inherent in
cuprates, destabilize the long-range AF order but affect the
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Fig. A·1. (Color online) tp/t (parameter for determining{k}occ) depen-
dence of total energy per site for the AF state is shown for various values
of a model parametert′/t and two doping ratesδ. The system size isL = 12.
The variational parameters except fortp/t are optimized for each model pa-
rameter set. The ranges oftp/t that give the minima ofE/t are indicated by
filled (for Type-I AF) and empty (for Type-II AF) arrows for eachδ.

d-SC order only slightly. Inhomogeniety allows static short-
range AF orders. We will address such subjects elsewhere.63)
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Appendix A: Optimization of Occupied k-Points {k}occ

in Normal, AF, and Mixed States

In this Appendix, we describe the details of how we ac-
tually optimizeΨN, ΨAF andΨmix for finite systems in this
study. The operation in band renormalization for finite-size
systems is composed of two elements:16) (i) Optimization of
the energy dispersionεk itself, and (ii) optimization of{k}occ

(the set of discretek-points occupied by electrons), which
is usually obtained by filling thek-points with electrons in
the order of smallεk optimized in (i).64) These two elements
merge in the thermodynamic limit, but it is convenient to treat
the two elements independently for finite systems for techni-
cal reasons.

In optimizing the band parameterstAF
η /t for finite systems,

E/t becomes discontinuous as a function oftAF
η /t at specific

valuest(i)η /t (i = 1, 2, · · · ), owing to the discretek-points.
Namely,{k}occ switches from one to another att(i)η /t. Further-
more,εk sometimes becomes almost constant in the ranges
between two discontinuities, sayt(1)

η < tη < t(2)
η . As a re-

sult, it becomes inconvenient to apply ordinary optimization
tools based on the derivative ofεk , such as the quasi-Newton
method and the stochastic reconfiguration method.

To overcome this difficulty, we follow the next prescrip-
tion in this study. In the process of (ii), we generate{k}occ

independently ofεAF
k or tAF

η /t and fix it at a certain configu-
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ration. Then,E/t becomes continuous as a function of every
variational parameter, and the ordinary optimization tools be-
come applicable. ComparingE/t thus optimized for a certain
{k}occ with those optimized for other{k}occ, we can determine
the optimized energy and wave function. In this process, it is
not realistic that one checks all possible{k}occ one by one, be-
cause the number of{k}occ grows exponentially as the system-
size increases. For the present case, we found that almost all
optimized{k}occ for small L are included in those generated
by εk up to the diagonal hopping. Therefore, we consider only
{k}occ generated by

ε
(p)
k = −2t

(
coskx + cosky

)
− 4tp coskx cosky, (A·1)

in a proper range oftp/t, instead ofεAF
k in Eq. (17) or

EAF
k = U/2 −

√
(εAF

k )2 + ∆2
AF. Here,tp/t is a kind of varia-

tional parameter that optimizes{k}occ and is independent of
εAF

k . Thereby, the number of{k}occ to be checked is greatly
reduced. In Fig. A·1, we show thetp/t dependence of varia-
tional energy per site for the AF state (L = 12), where all the
residual variational parameters includingtAF

η /t are optimized.
In the range oftp/t corresponding to a certain{k}occ, E/t is
constant. The optimized{k}occ is determined by finding the
range with the lowestE/t. Shown in this figure are the data
for δ ∼ 0.03 and 0.08, and the model parametert′/t = −0.4
– +0.3 for eachδ. We find forδ = 0.083 that the optimized
{k}occ is generated usingtp/t = −0.15 [0] (or nearbytp/t in the
same range) fort′/t < 0 (type-II AF) [t′/t > 0 (type-I AF)] as
indicated with an open [a solid] arrow.

We apply this scheme to all cases ofL = 10 and 12 for
ΨN,ΨAF, andΨmix. In some cases, however, it was found that
the true optimized{k}occ is not generated within the above
scheme, especially, for considerably large|t′/t| andδ. In such
cases, we search within several plausible{k}occ on the basis
of the optimized data for smallL. The above scheme, if the
correct{k}occ is obtained, is being an optimization in a wider
parameter range in the sense thatεk and {k}occ are indepen-
dently optimized; actually, a parametertp/t is added. How-
ever, it remains within the finite-size correction, because the
two elements merge forL→ ∞.

Appendix B: Choice of {k}occ as Leading Role of BRE

As discussed in Sects. 3.1 and 3.2, BRE plays a crucial role
in reducingEAF for large|t′/t|. In this Appendix, we argue that
the choice of{k}occ (not optimizingεAF

k ) primarily contributes
to this energy reduction and other properties by analyzing the
behavior owing to{k}occ (or tp) and toεAF

k [or tη (= tAF
η ), η =

1–4], and by comparing with results of the previous study16)

in which {k}occ andεAF
k depend on each other.

Shown in Fig. B·1 is thet′/t dependence of the optimized
band parameterstη and the parametertp, which determines
{k}occ, for δ = 0.0833. As described in Appendix A,tp is de-
termined independently oftη in ΨAF. Corresponding results
for the Hubbard model are presented in Fig. 13(b) in Ref. 16,
in which, contrastively,{k}occ is determined according toεAF

k
(or tη). Inversely speaking, available ranges oftη are regulated
by {k}occ. The difference of models is irrelevant here. Com-
paring these two results fort′/t > 0, we find that the opitized
values oftη are virtually identical. In this regime oft′/t, the
optimized{k}occ (≡ {k}(p)

occ) based ontp is identical with{k}occ
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Fig. B·1. (Color online)t′/t dependence of optimized band parameters in
ΨAF. The energy for a fixedt′/t becomes constant in certain ranges oftp as
explained in Appendix A; the optimized range oftp is shown in green.

(≡ {k}(ε)occ) determined using the optimizedtη.
On the other hand fort′/t < 0, in Fig. B·1, the optimized

range oftp/t is switched to a different narrow one (∼ −0.14),
whereas the optimizedtη are smoothly extended from the
regime oft′/t > 0. It follows that{k}(p)

occ , {k}(ε)occ for t′/t < 0.
As discussed in Sect. 3.2, some properties ofΨAF are critically
different between fort′/t ≳ 0 (type I) andt′/t ≲ 0 (type II).
Therefore, such properties are considered to be led by{k}occ

or FS and not byεAF
k itself. This predominance of{k}occ over

εAF
k can be seen in energy reduction. In contrast to the case in

Fig. B·1, the optimizedtη in Fig. 13(b) in Ref 16 are switched
to different values fort′/t < 0. This is becausetη are adjusted
so as to satisfy{k}(ε)occ = {k}(p)

occ. Namely, the optimization of
{k}occ takes priority over that ofεAF

k in energy minimization.
Thus, we can conclude that the reduction inEAF and some rel-
evant properties are primarily caused by FS renormalization,
and not by the band formεAF

k itself.
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