Journal of the Physical Society of Japan FULL PAPERS

Band-Renormalization Effects on Superconductivity and Antiferromagnetism
in Two-Dimensional t-J Model

Ryo Satd and Hisatoshi Yokoyama

Department of Physics, Tohoku University, Sendai 980-8578, Japan

Coexistence or exclusivity af,._,.-wave superconductingl{SC) and antiferromagnetic (AF) orders and instability
toward phase separation (PS) are reconsidered for the squareilattinedel with the diagonal transfet' ) term near
half filling. To reliably treat the strong correlation including the local constraint of no double occupancy, we use a varia-
tional Monte Carlo method, in which band-renormalizatifieet (BRE) is also incorporated. The results are compared
with those of the corresponding Hubbard model recently obtained [J. Phys. So85J0@4701 (2016)]. It is found
that BRE is very fective for the AF order and greatly modifies the ground-state phase diagramtirstepace ¢:
doping rate), especially for largé/t|, proposed by previous studies; in a wide rang¢ 4f(jt’/t| < 0.5) and for any
underdoped (< 0.15), the AF order arises fal/t = 0.3 similarly to the Hubbard model. In contrast with the Hubbard
model, however, thd-SC order also arises down to sm&lih a wide range of’/t (> —0.2), and coexists with the AF
order even fot’/t < O (type-ll AF regime). Furthermore, there is no instability toward PS fortgiands for J/t = 0.3.

1. Introduction been known that thel-SC order is predominant and over-
In cuprate superconductors (SGsjhe antiferromagnetic comes antiferromagnetism (AF) even for very small doping
(AF) orders in the insulating parent compounds rapidly varfates. Furthermore, the domain®SC extends up to sizable
ish on carrier doping and thi_,.-wave superconductingl{ ~doping ratesy ~ 0.5 for negative large values of/t with a
SC) orders arise in wide ranges of doping ra)e’{ Formerly, moderatel/t.>*? Thet-J model seems to have a somewhat
many theoretical studies supported this fundamental featutonger tendency towaSC than the Hubbard model.
as well as other properties df._.-wave superconductivity Because tht.eJ model works in the strqng-correlaﬂon I|m|t,.
(d-SC) on the basis of Hubbard-type d-type model$-12  methods applicable to the present subject beyond mean-field
However, recent numerical studies on square-lattice Hubbayels are restricted. Among others, the VMC mefitokas a
(t-'-U) models using refined techniques which simultaneCfUCia] adva_ntage, namely, it can treat correlation factors ex-
ously consider the two ordéfs'®argued that AF long-range agtly, mclgdlng the local constraint of no double occupancy,
orders prevail in wide ranges éfandt’ /t (diagonal hopping) with sufficiently large systems. Thus, this method has been
or phase separation (PS) occurstfor 0, and as a result, the often applied to the problems of (a) coexistence and exclu-

windows in the overdoped regime. However, the conclusions of (a) and (b) were not necessarily

In a previous study®) applying a variational Monte Carlo unified among the .studies bu_t seemed rather scattered: _Fur-
(VMC) method to a strongly correlated Hubbartt’¢U) thermore, the physics underlying them has not been clarified.
model, we obtained basically the same results: A bandhe previous papef) addressing this subject in the Hubbard
renormalization fect (BRE) plays an essential role for themodel, showed that vital to these problems is the valu&/of
stabilization of AF orders for large values|6ft| through re- Whose importance had been often disregarded. Here, we will
trieving the nesting. Consequently, states with AF orders &Ry out a similar analysis for ttteJ model.

PS become remarkably more stable than a ptB€ state in In Table I, we summarize the conclusmns as to the above
the whole underdoped regime and the whole realistic range ¥f0 Problems of relevant VMC studies for the) model and

t'/t (Fig. 27 in Ref. 16). This result is serious in that it is ob-°f recent ones for the Hubbard model. We add a result of the
tained using a variation theory, which gives an upper bourfitended Gutzwiller approximatiéf as a representative of

of the exact energy. Namely, for realizing a pukSC or- analytic calculation_s that respect the local constraint. The con-
der, breakthrough improvement is required in the ti8C clusions are classified accordingttgt = 0 or~ —0.3 (typical .
states, notwithstanding sudhSC states already properly de-values of hole—dqped cup_rates). For the simple square lattice
scribe various aspects of cuprate SCs as mentioned abovel'ift = 0), all studies unanimously showed the coexistence of
is important to check whether this perplexing feature is chatte two orders, and the values of the critical doping fate
acteristic of the Hubbard model. are broadly similar. This feature is also common to that of the

In this context, it is significant to study the same subjectsubbard model. However, titeJ model with J/t ~ 0.3 has
in the t-J modell”) another key model of cuprates. Thg  Stability against PS, in contrast with the Hubbard model with

model possibly has aspectsfdrent from the Hubbard model U/t = 12. On the other hand fdf/t ~ -0.3, the conclusions
for realistic values o8/t (~ 0.2 — 05), although the two mod- @S to whether the two orders coexist or not and the values of
els are connected fal/t (t/U) — 0 ands ~ 01820 |n the dar largely depend on the studies. This dependence seems to

studies of pure (single-order AF amSC) states;® it has result from whether the band renormalization (BR) is properly
introduced or not.

In this paper, we study the interplay of AF adeéSC or-
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Table I. Results of interplay between the AF adeéSC orders in mixed

states are compared among relevant VMC (and extended Gutzwiller approx-

imation) studies for the square-lattite) model and recent VMC studies (a) FE (b) Y
for the Hubbard model (lowest three). The upper row of the second column

shows whether (or how) BR is introduced. The total number of BR parame-

ters, if known, is entered in brackets. The lower row indicates a typical value ® t i ® *
of J/t (or U/t) studied. The upper row of the third and fourth columns indi-
cates whether the state is coexistent or exclusive (with realized order). The 0?0 ® [

lower row indicates whether the realized state is homogeneous or phase sef
arated, and the value 64, above which the AF orders vanish, is shown in
brackets. Fos > dar, d-SC appears for all cases shown here.

Fig. 1. (Color online) (a) Hopping processes in Hamiltonian [Eq. (2)] and

I('J:tfgjrsear) (J/??J/t) t /E; (; t /E(; _)0'3 (b) those corresponding to band-adjusting paramejes = 1 — 4) in trial

! : AP AR wave functions [Egs. (12) and (18) — (21)]. In both pantis the unit.
Ref. 34 No Coexistent —
(EXL.GA, '03) (0.3) — (~011)
Ref. 29 No Coexistent —
(VMC, '99) (0.3) Homo. ¢~ 0.1) .
Ref. 30 No Coexistent — 2. Formulation
(VMC, '04) (1/3) PS ¢ 0.1) After introducing the model Hamiltonian in Sect. 2.1, we
Ref. 31 Partially | Coexistent Exclusive, AF explain the VMC method, especially, the trial wave functions
(VMC, '04) 0.3) — (~01 — (~0.06) in Sect. 2.2. Relevant quantities are defined in Sect. 2.3.
Refs. 22,32 No Coexistent Coexistent
(VMC,06,08) (0.2) Homo. ¢ 0.12) — (~01) 21 tt-J model
Ref. 24 No — Coexistent ’ . . .
(VMC, 09) ©0.3) — (~01) .We consider the-J mo_del on the square lattite with a
Ref. 25 Partially (4) | — Coexistent diagonal transfer term [Fig. 1(a)]
(VMC, '16) (0.3) Homo. (~ 0.08) H = Higp+ Hy = Hy + Hy + H, (1)
This work Yes (8) Coexistent Exclusive, AF op
(VMC, '18) (0.3) Homo. (~ 0.14) Homo. (~ 0.20) =t (":.T & +Hc)-t ET & +Hec. (2)
Ref. 35 No Coexistent — <§U( oI ) (%“U( Lo )
(VMC, '16) (10) PS, Homo. £ 0.12) ” e
Ref. 14 Implicitly Coexistent Exclusive, AF 1.
(M-VMC, '14) (10) PS (- 0.18) Homo. (- 0.24) +J Z (3 "Sj - Z”inj) , 3)
Ref. 16 Yes (8) Coexistent Exclusive, AF D
(VMC, '16) (12) PS ¢ 0.15) Homo. (- 0.25) wherec, = ¢j,-(1-nj_,) is the annihilation operator that acts

in the space without double occupatiar, is the ordinary

ders in thet-t'-J model by comparing pure (AF amttSC) annihilation operator for the Wannier statg, = ch(”:j(,, and
states and a mixed state of the two orders, in the framewogk = %Za,ﬁ CJT(,O'aﬁij (o : Pauli matrix).<i, jy and {, j) in the

of VMC. Into the trial states, we introduce BR parameters insummations in Egs. (2) and (3) indicate the pairs of nearest-
dependently for the AF andtSC parts. We also take accountneighbor and diagonal-neighbor sites, respectively. Thus, the
of nearest-neighbor correlation factors which distinguish allare band dispersion is

patterns of bond configurations. In this way, we clarify the fol- . ,

lowing points: (i) How the pure AF state is stabilized by BRE B = —2t (cosky + cosky) — 4’ cosky cosk,. 4)

and exhibits a kind of Lifshitz transition in which the loci of  The value oft’'/t depends on the kind of cuprate SCs and
pocket Fermi surfaces (FSs) switch, as seen in the Hubbagtonsidered-0.1 (LSCO) —0.3 (YBCO,BSCCO) for hole-
model® (i) How BRE affects the purel-SC state. (jii) How doped systems and0.3 for electron-doped systems (through
the property of coexistence or exclusivity of the two orderg|ectron-hole transformatiod) According to band calcula-
evolves ad’/t and§ are varied in the mixed state. And, Weti0n5?8v39) the existence of apica| oxygen tends to increase
will trace the cause of this property by comparing the behavigr/t, We repeat that the value 6f/t plays a leading role in
between the pure states and mixed state. (iv) Whether or Rk present subject. As fal/t, we mainly discuss a typical
the states are stable against PS. As a summary, we construghge for cuprated/t = 0.3, although we sometimes refer to
phase diagram iti-6 plane using the mixed state (Fig. 21), inj/t dependence. The Hamiltonian Eq. (1) is connected to the
order to compare with that for the Hubbard model. Hubbard Hamiltonian through the strong-coupling expansion
This paper is organized as follows: In Sect. 2, we explaifpr J/t, t/U — 0 with J = 4t2/U near half filling® Thereby,
the model and method used. In Sect. 3, we discuss BRE gp = 0.3 corresponds tt)/t = 13.3. We uset and the lattice

the pure AF andl-SC states. In Sect. 4, we StUdy the inter'spacing as the units of energy and |ength, respective]y_
play of the two orders using the mixed state. In Sect. 5, we

recapitulate this work. In Appendix A, we describe the des 2 \riational Monte Carlo method

tails of optimizing the trial wave functions. In Appendix B, A merit of the VMC metho@® is the possibility of speci-

we argue that the energy reduction in the AF state is prima(ying important factors or physics (e.g. BRE) in the system

ily caused by FS renormalization but not by the band formy¢ oy interest. To this end, it is vital to construct simple

Preliminary results of the present study were published ini&a| wave functions that capture the essence. In this study,

conference proceeding®. as many-body trial states, we use a Jastrow t§pe, P®,**
where® is a two-body correlation factor (projector) afdds
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. . Table Il. Comparison of form OEQ and choice ofk}occ for band renor-
a one-body (mean-field-type) wave funct|or_1. malization in mixed states among related studies. The second cotls8@)(
We take the form ofP common to all trial statesP =  shows the energy dispersion to be optimized in the one-be8¢ part and

PcP;. Here Pg is the onsite projectdPs = HJ- [1- annu]‘u) the third column (AF) the same but in the AF part. In the fourth column, the
that ensures the above local constraint. In the intersite faiétal number of band parameters are entered. The rightmost column indicates
tor P3, we consider both charge-density and spin correlatiof§" ' cheose the occupiddpoints in the AF part.

between nearest-neighbor sités: = P, Ps. For the charge- Literature | d-SC AF Param. {K}occin AF part
density part, we use an interhole correlation, Ref. 33 & 2 4 Order ofyk
Ref. 25 e3C  gAF =5C 4 Order ofyy
Po=[[[1-@-a)hiny] (5) koS =k i
W Ref. 16 &° st 8 Order ofefF
Presentwork| ¢ ar 8 Optimizing¥ mix

with h; = (1 - fAj;;)(1 - ;). For the spin-dependent part, we
use the form,
Po= | [|1-@-B0) @iy + i)
Gi.j)

describe, in Appendix A, how we deal with the optimization
of {k}occ in this study.®ar is reduced taby for Aar = 0.

The pured,._,.-wave singlet pairing (BCS) state of a fixed
X [1 - (1-B2) (A, + ﬁilﬁ”)] : (6) electron numbeN is given by

In Egs. (5) and (6)¢, 81 andpB, are variational parameters. 2

Py, is effective, especially, in a highly doped reginf&, plays Dy = (Z $(K) cﬂTchl] 0), (14)
a corrective role for the (often overestimated) AF order. Us- k

ing P andPs, we can assign distinct weights to alffdirent where

nearest-neighbor bond configurations. A
. . .. Kk k
We turn to the one-body patt, into which BRE342)is in- $(K) = - - (15)
troduced. The forms used in the previous stitgre applied g+ (57— )+ AL

to the present cases. We start with the normal (paramagne%}h A

i = Ag4(cosky — cosky). Aq andu are variational param-
state (Fermi Sea), a(cosky y). Ag andu p

eters corresponding to tlteSC gap and chemical potential.
Dy = 1—[ cl o), (7 In &:C, BRE is introducededy is reduced toby for Ag = 0
Kl & andu = Ho (uo: the non—_interactir.lg chemical potential).
wherelk}occ indicates the set of occupied wave-number pointi The m's>§$92§;tate' which can 3|multane_ously heeC and
fK € ke. Althouah there is no explicit variational parameter F orders; are constructed by replacing the bare e_I_ectron
O K € K. ough there 1S no explictt variational parame eoperatorcT in Eq. (14) by the AF quasiparticle operaaér
in @y, we have to determingk}occ variationally as in the AF ko ) o

case when BRE is considered (see below and Appendix A)In Eas. (9) and (10) &

For the (commensurate) AF state, we apply the form of y
Hartree-Fock (HF) solution far = 0 at half filling, in which Dpix = [Z (k) alTafkl] ). (16)
case the nesting condition is completely satisfied, to the other K
cases of’/t ands in a sense of variation theory: ®nmix is reduced to the pure states in certain limits, namely,
Par = 1—1 alL (r|0>’ (8) for AAF- =0 anq(DAF for Afj = 0 andu = ug.
Ko o For introducing BRE intoPar, ®g and Ok, We extend

_ o _ the band dispersions,” in Eq. (13) ands7C in Eq. (15) by
Whefe,af(,g is an AF quasiparticle operator given as including tight-binding hopping terms up to three-step pro-
cesses shown in Fig. 1(b) as,

s’k\ =y + 8/1\(k) + s’z\(k) + sg(k) + eﬁ(k), a7
with A = SC or AF and

a:(-,(r = akcﬂ(-,(r + Sgnb-) ﬂkcl+Q,o” (9)

a‘;:+Q,o' = _Sgnb) Bkclz,o' + akCE+Q,<r' (10)
In Egs. (9) and (10% is taken in the folded AF Brillouin zone

A _ A
with the lower-band energy dispersion, &1 (k) = —4t; cosky cosky, (18)
£5(k) = —2t2(cos Xy + cos X), (19)
eF- 2 feiaz (11) 2 2 X Y
2 e (K) = —4t5 (cos X cosky + coskscos k),  (20)
Y= —2H{coskc+ cosky). (12) e (K) = —2t}(cos y + cos ). 21)
Q= (mm). sgn) =1 (=1)fore =T (1), and These band-adjusting (variational) parametgr/s (n = 1-
1 gﬁ‘F 4) are independent of the model paramétgrin H and of
ax (Bk) = 5 1- (ﬂﬁ- (13)  t,/t used for determiningk}occ (See Appendix A). Thus, we
(Sk ) +Ar have four band parametersdnr and®q4, and eight in®pix.

In @y, it is crucial to optimizet>© andt)", independently.
Actually, for the Hubbard modéf) only t7¢/t is effective in
thed-SC part, but)/t up ton = 4 become important for the
nesting in the AF part. Furthermore, there is room for how to
choosdk}qccin the AF part. In Table I, we compare the ways

Aar corresponds to the AF gap in the sense of HF thé8in
Eq. (13), allowing for BRE (explained shortly), we writf"
for the energy dispersion, insteadyaf The choice ofk}oce,
namely FS, is included in the BR processestaf ¥ar and
Wmix, and is not easy operation for finite-size systéfsve
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of introducing BRE into mixed states among related studies. 02 d-SC Jt=0.3 t/t=-0.3
In this work (the last row), we tak&"/t andt>C/t as eight — Vi
independent band parameters, and deterrtkfg. so as to Er

minimize the total energy with respectf,ix, instead of us- —

ing some guiding energy dispersion. Therefore, the present :m

way of introducing BRE comprehends the other ways in Ta-
ble Il as special cases. The independenceoft andt>/t
is, in particular, important; otherwise, qualitativelyffédrent

results are sometimes derivéd®® as shown in Table | above g fd

and Table IV in Ref. 16. We describe the details of optimizing T g

{K}oce in this work in Appendix A. 0 005 01 015 02 025 03
Variational expectation values @ with respect to¥, (= o

Pd,; A =N, AF, d, and mix),

R Fig. 2. (Color online) The optimized band parametéj‘% =t, (n = 1-4)
Bye = (PA|O|¥A) 29 in W4 are depicted as a function of doping ratetfgt = —0.3. The values of
(O = (PAl¥2) (22) t, without BR are indicated by dotted lines in coordinate colors.

are numerically estimated using a VMC metRdor finite

. . L i ; i atinEBR
systems ofNs = L x L sites (_ =10- 24) with the peI’IOdIC— Table 1ll.  Energy |mpr9vement owing to band renormallzatmEA,/t
antiperiodic boundary conditions. The number of samples fé/r\ =AF, SC) [Eq. (28)] in the pure states for three typical values' f

P y ) P nd doping rateJ/t = 0.3 andL = 10. For comparison, we show the corre-

COfT]pgtiﬂg(O) are typically 25 x 10°. Optimizatiqn (_)f the  sponding data of the Hubbard model withit = 12 borrowed from Ref. 16.
variational parameters except figy't (see Appendix) is per- The last digit of each has some error.

formed using the stochastic reconfiguration metffd. States vjt\o | 00 008 016
-0.3 | 00009 Q0017 00038
2.3 Physical quantities d-sc 0.0 | 0.0001 00002 00005
Here, we define quantities often referred to. The total en- +03 | 00009 00001 00001

-0.3 | 0.0601 00405 00251

ergy per site of the stat& is written asE, = (H)a/Ns. As AF 00 | 00001 00009 00010
the AF order parameter, staggered magnetization, 403 | 00586 00307 00087
2 01z -0.3 | 0.0019 00004 00001
m= Z ‘é SO (23) d-SC (Hubbrad)| 0.0 | 0.0000 00002 00005

s £

i

+0.3 | 0.0001 00003 Q0005

. . . —0.3 | 01653 00622 00220
is used, wher® is the AF nesting vectorm( ). m becomes AF (Hubbrad) 00 | 00058 00102 00020

unity for the full moment. As the indicator aFSC order, we +0.3 | 01653 00603 00108
use the real-spaadSC correlation function for the nearest-
neighbor-site pairingPy = Py(r ) with r, = (L/2,L/2) and

3.1 d-wave superconducting state
Pa(r) = 1 Z Z (~1)L0E) (AI(Ri)Ar/(Ri " r)), (24) In a previous studyf) for the Hubbard model, it was found
Ns 4 TR that BRE in¥y affects only very slightly physical quanti-
ties as well as energy for lardé/t and|t’/t|, compared to
Wae, although the renormalization af¢/t in Wy is never
small?%:2348) In Fig. 2, we plots dependence of the opti-
mized band parameters of theSC states for thé-J model
ALR) = (el + ¢ cl)/ V2 (25) with t'/t = -0.3. Foré ~ 0 and in the overdoped regime
T luate th tributi ¢ AF lati disol théd > 0.16),t;/t is greatly renormalized, namely, going away
o_eva Llla €the Cfoﬂ ribution o C?rre ation, we dispiay e,y —-0.3; the large BR in the latter regime is absent in the
q = Q element of the spin structure factor, Hubbard model (See Fig. 3 in Ref. 16). Sing# linearly in-
1 i0(R-R: creases witld, BR becomes largd/t goes away from 0) in
- = a(Ri-R)) {gzq? ' g g y
S(@) N Z ¢ J <S'SJ>' (26) the overdoped regime. This behavior contrasts with that for
_ . the Hubbard model, whetg/t substantially vanishes for any
For studying the electronic state, we use the momentum dl‘i‘Fort’/t = 0.3 (not shown), more marked BR existstirit
tribution function, (-0.1 < t1/t < 0.1) for § < 0.2, andt,/t ~ —0.05 for mosts.
1 $ Thus, the renormalization a@f/t andt,/t becomes apprecia-
n(k) = 5 Z<Ckcrck”>’ @) plein ¥, for thet-J model.

) _ _ ) _ ) o In Table Ill, we show the energy improvement owing to
in which availablek points are shifted byt/L in y direction BRE for thet-J model:

owing to the boundary conditions used.

whereX (§) denotes the lattice vector i(y) direction,é(r, 7)
indicates the Kronecker delta, and(R;) is the creation op-
erator of a nearest-neighbor singlet pair at Bite

i]

AESR = E5(no BR)- E,, (28)

3. Results of Pure States . .
. ) whereE, (no BR) is the energy per site of the statgA =

In Sects. 3.1 and 3.2, we discuss noteworthy aspects of {a¢ or d] calculated without BR, namely, using the band pa-
pured-SC statelq and pure AF stat®ar, respectively. rameters) (andt, for AF) fixed at the values ifH. Notable
features are found inERR: (i) Both for the d-SC and AF
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Fig. 3. (Color online) Doping rate dependencedifvave SC correlation
function Py calculated using’q for various values of /t (andL).

1

0 01 02 03 04 05 0.6 07 0.8

[=12 5=0.1380 b It
-0.3 —x—
0.8 :8:% O Fig. 5. (Color online)J/t dependence of the spin correlation function at
8(1) —o— g = (m,m) (green) and the-SC correlation function (blue) calculated using
02 —v— Yy are compared for four'/t. The figures of the symbols are common to
00 03 —o— pu8 S(g) andP
=< 04 —&— q d-
g
0.4
S o RO TR
0.2 | Pure states AF d-SC AF d-SC
Nor =— 0.3 ° °® ° e ° ° ° ° °
d-SC— ‘ T @ @ @ o @ o 82 8 8 |
.0 o) mn 0.0 T 5 85 8 5 8 8 38 &8
k LQ n n n n n n n n n
Fig. 4. (Color online) The momentum distribution function of the pdre 02r & ¢ % fot 8 B R F T
SC state is drawn along the pathlat (0, 0)-(r, 0)-(r, 7)-(0, 0). Results for £ &8 8 8 8 f: s 8 8
various values of’/t are drawn in blue. For comparison, corresponding re- 8 2 8 @8 8.,/8 8 8 =8
sults of the normal (paramagnetic) state are added in gég¢enr.0.3. 0.1 s SAF® ® ~® s ®AF® 8 |
L] L] L] L ] L] L] L] L]
g ¢ &2 ¢ 2 2 2 ¢
. . . . . 0 | | L | L | L |
states, BRE is almost iffective fort’/t = 0. (ii) Energy im- -04 0.2 0 0.2 0.4
t/t

provement in thel-SC state is small for arty/t ands, despite
the above large BR ify/t andty/t. (iii) Energy improvement . . .
in the AF state is one or two orders of magnitude larger thd9- &: (Color online)t’-5 phase diagram constructed by comparing ener-
. , gles of pure AF andl-SC states. For largé /t|, the AF domain is likely to

in the O!'SC state for’/t = +0.3. These features of ﬂ‘.teJ expand to the largé-direction for technical reasot&) The bold gray dashed
model is common to those of the Hubbard mo#&Owing  jine indicate a similar AR-SC boundary determined using the data without
to the feature (i), the results of previous studiestfgt = 0  BR for the Hubbard model df/t = 121%18) The diference of models does
in Table | are almost identical despite whether BRE is introRot afect the aspect for larde/t].

duced or not. The feature (ii) indicates that various properties

of ¥4 are almost unchanging by BRE. The feature (iii) will be

discussed later in Sect. 3.2. These features are identical wifi§ electrons wittk near antinodal must play a leading role

those of the Hubbard model. for d-SC1® This feature is common to that of the Hubbard
We notice in Table IIl thas dependence ofESR is oppo- model*V _
site between the-J and Hubbard models fdt/t = -0.3,al-  We tum to the relation between thieSC order and AF

though its magnitude is not large. This feature stems from ti§@rrelation. In Fig. 5, we ploPy and S(q) [Eq. (26)] with

above contrastive behaviorafandt,, and is probably related d = Q = (7.7) as a function of)/t. As the spin exchange

to the prevalence ad-SC order for large negativié/t in the interactionJ/t increasesPy increases faithfully according to

t-J model?-29)This prevalence is confirmed 1B [Eq. (24)] S(Q) for anyt’/t, meaning that the driving force aFSC is

shown in Fig. 3 and is hardly changed by BRE; the range &pe AF exchange interaction. Therefore, the scattering process

d-SC seems very wide (probably upde= 0.5), as compared (or a vector connecting FSs) @fcomes to play a crucial role

to the Hubbard modéf The dome-likes dependence af-  for raisingd-SC*"47

SC correlation has been well-known since early studies of the These properties are consistent with the results of previous

t-J model® studies. We will discuss the stability against P&gtogether
Shown in Fig. 4 ism(k) for various values of /t. As a fea- With the case o in Sect. 3.2.

ture ofd,._y.-wave symmetry, a Fermi point exists in the nodal ) _

direction near£/2, x/2)? whereas a gap opens near the anti3-2 Antiferromagnetic state

nodal r, 0) in contrast with the case &fy. Note that, as’'/t As mentioned in Sect. 3.1 [feature (iii)], BRE is highly ef-

is varied, the behavior near the antinodal markedly changdgctive in reducing the energy of the AF state for lafgg].

but is almost unchanging for the othler Because the prop- This energy reduction is primarily caused by the FS renor-

erty ofd-SC appreciably changes witht as shown in Fig. 3, malization (choice ofk}occ) but not by the band forna"
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Fig. 7. (Color online)t’/t dependence of total energy per site (green, left 04t 01389 —o—
axis) and staggered magnetization [Eq. (23)] (red, right axi&)f. Three 0.7 0.2 01941 —>—
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~ 0.5 —o—

c 0.4 g Fig. 9. (Color online) Doping-rate dependence of the momentum distribu-
tion function ofWar for J/t = 0.3. In (a), we plot the results of typic#l/t
values of type-I (red) and type-ll (blue) AF states for three values of doping

0.2 rate. The red (blue) arrow indicates the locus of pocket Fermi surface of type-
1 | (type-Il) AF. In (b), we plot the results faf/t = 0.3 (type-l) in a wide range
‘ of doping rate up to the PM reginte> §ar (~ 0.20, pale color). The arrow
8),0) (100) (TLTD) (0,0) indicates a Fermi surface appearing for the PM state. Shown in the irset is
k dependence of the staggered magnetization of the same systems.
Fig. 8. (Color online) The momentum distribution function calculated us-

ing metallic § > 0) ¥ar is shown along the same path as in Fig. 4. The . . .
cases of variout /t are compared. The data of type-I (II) AF state are showrthis insulating AF state changes over to metallic with FSs.

with red (blue) symbols. The Lifshitz point i§/t ~ 0. The red (blue) arrow |n Fig. 7, we showt’/t dependence of total energy and stag-
indicates the loci of pocket Fermi surfaces of the type-I (type-Il) AF state. gered magnetization for three doping rates (&pdwe find
cusps (or small discontinuities im) in both quantities at
) ) ) ) . t' =t ~ 0, suggesting some transition. If this anomaly in-
itself, as explaln%(len Appendix B. The energy improvemenfjicates the aforesaid Lifshitz transition, the loci of the FSs
owing to BREAE,F [Bliq- (28)] is one or two orders of mag- shoyld be switched wheti passes througl{ . To confirm
nitude larger thamE;™, as shown in Table IIl. Thereby, the it \ve show, in Fig. 8, the momentum distribution function
t’-§ phase diagram constructed within the the pure states[|§q_ (27)] ats = 0.083 for various values df /t. We find a
r)otigea_bly changed, as shown in Fig. 6. The bo.ld gray das“ﬁ@cket FS (discontinuity) arourid = (,0) [(x/2, x/2)] for
Ime indicates the boundary beth_—zen AF ah8C in the case ¢ - t/ [t' < t/]; the loci of the pocket FS suddenly changes at
without BRE for the corresponding Hubbard case. The Ap _ 7 ‘This behavior is basically the same as what was found
range shrm'ks and vanishes for large negattl)(/leln'contrast, for a strongly correlated Hubbard mod&.We named the
by introducing BRE, the AF range expandsiiadl| increases  former (latter) state the type-I (type-11) AF state. Related phe-
especially in the negative/t side: ' Incidentally, it is kNown - homena or behavior in thieJ model as well as the Hubbard
for_thet—.J model witht’/t = O that the stab!e state is rgpldly model have been studied since the early days of cuptstes
switched from AF tod-SC on carrier doping even without 4q |ater in various studie® in connection with the dier-
BRE® This feature is unchanging by BRE and contrasts Withnhce in ARPES spectra between electron-d&Peund hole-
the Hubbard case (gray line). Anyway, this result with BRE i%lopeé5) cuprates. Furthermore, thisfitirence greatlyféects
contrary to the common knowledge that the AF state is rapidly,ether AF and-SC orders are coexistent or exclusie.
destabilized on doping and tlieSC order appears for hole-  \yie confirmed that, even if/t is varied, the abové/t de-
doped cased'(t < 0). o . pendence oh(k) is preserved as far ak < Jps, where Jps
Next, we study the (expected) Lifshitz transition in the(N 2.5t for § ~ 0.08 — Q20) is the transition point to PS (not
metallic (doped) AF states, which corresponds to what Wagown)%® In Fig. 9, we show the dependence afi(k). In

found in the Hubbard modéf) At half filing, an insulat-  (4) \ve find that the loci of pocket FS are unchanging when
ing AF state is realized, because thé model is reduced to s is varied regardless of the type of ARt/ = 0.3) or II

the Heisenberg antiferromagrfét>?) This AF is preserved at (t'/t = -0.3). Shown in (b) are the dat&/(t = 0.3, type-I)

least for|t’/t] < 0.5, because the nesting condition is coMyoy 4 wider range o6 up to ~ 0.28 in the PM area. The lo-
pletely retrieved owing to BRE. When carriers are doped,

6
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Fig. 10. (Color online)t’-§ diagram according to Fermi-surface topology

J/t=0.3
- AF L=10
— AF =12
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—A— d-SC L=12
©- Hubbard AF L=10

Hubbard AF [=12

-1.5

204 03 02 -0.1
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4

(occupiedk-points) in the optimized metallic AF (PM) states. Red circlesrig. 11. (Color online) Inverse charge susceptibilities of pure AF (red) and
(triangles) indicate the type-I AF fdr = 10 (L = 12), and similarly blue d-SC (blue) states as functions tft. For comparison, the corresponding
symbols the type-Il AF. The symbols in pale colors indicate the PM casefata of the AF state for the Hubbard model withit = 1216) (gray) are

(m = 0), in which the occupied-points are the same as those in the AFadded. The horizontal dash-dotted lingyd = 0) is the boundary of stability

states of corresponding types (abf The boundary between blue and red ag
(dark and pale colors) indicatés/t (5aF).

ainst PS.

0 AF Jit=0.3 (a)
cus of the pocket FS is preserved until the AF order vanishes 0.1 ]
até = oar ~ 0.2 (seemin the inset). The pocket FS of the
AF state changes to a global FS centerel at (0, 0) of the 02
PM state ab = Sar, but{k}occ is identical betweed s and 03
®y. The evolution of(k) according tas is similar in type-II ,1? 04
cases. .

As a summary of FS topology, we construct a diagram of =05 19
the types of AF order inVar and of{k}occ in ¥y in thet’-§ § 19
space (Fig. 10). The Lifshitz poitft/t (the boundary between w067 19
red and blue) slightly shifts to a smaller valuesascreases. 071 0310 féfi
Incidentally, in the Hubbard model, the Lifshitz point is situ- 00 15 —3=
ated at-0.1 < t/ /t < O for any model-parameter s&l.Note 081 s ig 2
that the AF order is stable in the whole underdoped regime 0.9
© < 0.16) for apyt’/t. - ) | 0 005 0.1 0.5 ()52 025 03 035 04

Finally, we discuss the intrinsic stability against PSia. 0
Following the previous stud?) we judge this property by the a-SC  Jt=0.3 (b)
sign of charge susceptibilitye, 0.1 £

1 0%E(6) _ E(6+ AS) + E(6 — AS) — 2E(5) 29 -0.2
Xxe o 062 (A6)? - @) w 03
For yc > 0 (yc < 0), the state is stable against (unstable to- u\_? 04
ward) PS. We found that dependence of the energy Bhr
is fitted well by the parabolic form SR
=}
E(5) = Co + C16 + Co6%, (30) W06

for 6 < 6aF (except in thes — 0 limit). Therefore, we have a 0.7 19
unique valugy; = cgl in the AF phase. In Fig. 11, the values 08 0193
of 1/y. thus estimated are plotted in red as a functiotf 4f 0319~
for L = 10 and 12y of War for J/t = 0.3 is positive for any 0.9 57005 01 015 02 025 03 035 04
t’/t, in contrast with that of the Hubbard model witht = 12 o
(gray symbols), which becomes negative arotifid= 0. The Fig. 12. (Color online) Doping-rate dependence of two energy elements

AF state is always stable against PS Jgr = 0.3.

We mentionJ/t dependence of this property. In Fig. 12(a) typical values ot’ /t.

we shows dependence of the two energy elemefig, =
(Hnopy/Ns and E = (H;)/Ns of War for J/t = 0.3. For any
t'/t, Enop/t is downward-convex anl;/t is concave; the con-

per siteEnop andE; with respect to pure (a) AF and (H)SC states for three
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Fig. 15. (Color online) Contour maps of momentum distribution function
n(k) of (a) Yar, (b) ¥4, and (c)¥mix for (t'/t,6) = (0.2,~ 0.08), a typical
case of category (1)Har (type-l) < Eg], in the first Brillouin zone. The
arrow in (a) indicate th€ vector connecting two pocket FSs.

Ed-SC - EAF

0 005 01 0I5 02 025 03 clusivity of the two orders inPiy. Let us focus on the cases
of § = 0.08, because all the above categories (1)-(4) appear.

Fig. 13. (Color online) Energy dference between the pure AF and SC  First, we check whether the two orders coexist or not in

states [Eq. (31)] is depicted as a function of doping rate for severa values 8fch category. In Fig. 14(a), we depiactependence d?y and

t’/t. The zero (black line) is the boundary whether the lower energy is give, : .

by War or 4. For positive (negativepE/t, the AF @d-SC) state is more H] Calcu.late(.j using the pure statg and ‘PA'.:’ regpectlvely.

stable.J/t = 0.3. The black ring indicate$ = 0.08 used for explanation. Shown in Flg.. 14(b) a'.’e the same quantities S|mUItaneOUS|y

calculated using the mixed stakg,x. In (a), bothPy andm at

¢ = 0.08 (marked with a ring) are finite for aty/t, indicating

vexity of total energy, namely, stability against PS stems froithat each order can arise as a single order fortgftyif the
the hopping energy. Becuags is the factor of instability to- counter order does not arise. And the values of btfand
ward PS ¥ will become unstable a3/t increases ang; Mmare almost constant with respecttd. In (b), howeverpPq
becomes predominant. We would like to address this subjé@nishes fot’/t = —0.3 with m almost unchanging, whereas
again elsewhere. P4 is almost unchanging for other valuestgft butmtends to

At this opportunity, we discuss the stability against PS ope suppressed, especially, toft = —0.1. Thus, we find that
other states. In Fig. 11, we also ploty} of Wy in blue. Be- in the regime of type-Il AF{{/t < 0, categories (2) and (4)],
causey. is always positive¥q is stable against PS in the the AF andd-SC orders tend to exclude each other, whereas

range shown. This property is the same as that in the Hubbdfdithe regime of type-I AFY{/t > 0, categories (1) and (3)],
model withU/t = 1219 In Fig. 12(b), we show dependence the two orders are likely to coexist. This is the same tendency
of the two energy elements. Since bdih,, and E, exhibit s that of the Hubbard modé. _

a tendency similar to that oFar in Fig. 12(a),¥4 will also Before studying the features of each category, we introduce
phase separates at a ladjée For the mixed state, we estimateCommon terminologies and an empirical lawEf < Eg (A,

1/x. for eachs for J/t = 0.3 using the expression of finite B=AF or d-SC) for the pure states, we call the order A (B)
differences in Eq. (29), because the quadratic () is de- the leading (subordinate) order. In all categories (1)—(4), the
teriorated by the existence of subdivided domains [(1)—(4)ieading order necessarily arises in the mixed stafg, if the

as will be discussed in Sect. 4. Anyway, we find thatd> 0 leading order arises in the pure state with the same model
holds for anys (not shown), so tha¥ i is also stable against Parameter set’(t, 6).

PS. In category (1) [e.g.t(/t, 5) = (0.2,0.08)], the leading and
_ subordinate orders are the type-l AF ah&C, respectively.
4. Mixed State of AF andd-SC Orders According to the above law, the AF order of type-I arises in

In this section, we study the interplay of AF adeSC or- ¥mix; the problem is whether thé-SC order can simultane-
ders in the mixed stat@. We start with the energy fier-  0usly arise or not. Actually, thé-SC order coexists with the

ence between the two pure sta¥ég and¥g: AF order inWnix as in Fig. 14(b). Let us consider the mech-
anism of the coexistence. Figure 15 shows the contour maps
AE = Eq — Ear. (31)  of n(k) for the three kinds off. As described in Sect. 3.2,

In Fig. 13,5 dependence okE/t for J/t = 0.3 is shown for the pure AF state (left panel) has pocket FSs near antinodal
various values of /t (L = 10 and 12). Note that there exist[(7,0), (O +7)] and exhibits a gap in the other regionlaf
cases in whicll-SC is more stable than ARE/t > 0) inthe  In the pured-SC state (middle panel), a SC gap opens except
underdoped regimes (< 0.16), in contrast with the Hubbard in the nodal directionsk, = +k), where Fermi points appear
model withU/t = 1218 We can divide thé-t’ space into four near tr/2, +7/2). As mentioned in Sect. 3.1 and in the pre-

domains (categories) according to vious papet? the occurence al-SC as the subordinate order
(1) Ear (type-l) < Eq requires the FSs which are connected with the scattering vec-
(2) Ear (type-Il) < Eq tor Q = (m, ) in the leading-order (AF) state, especially, near
(3) Eq < Ear (type-1) antinodal owing to the largest._.-wave gap and density of
(4) Eq < Ear (type-ll) state. In category (1), the pocket FSs in Fig. 15(a) meet this

when the AF anr d-SC orders arise. This classification is'equirement. Consequently, tdeSC order arises i mix and
convenient to understand the behavior of coexistence or dke d-SC gap opens at the loci of pocket FS near antinodal.
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Fig. 14. (Color online) Doping-rate dependence of order parametetsS€ Py, left axis) and AF fn, right axis). In (a) Py (m) is calculated using the pure
state¥y (Yar). In (b), bothPy andm are calculated simultaneously using the mixed stgg. The rings indicaté = 0.08 for explanation.

JIt=0.3 1/t=-0.3 3=0.0833 L=24 JIt=0.3 t/t=-0.1 5=0.0833 L=24
AF d-sC Mixed AF d-sC Mixed
‘ ‘ - SIO i

X X X
Fig. 16. (Color online) Contour maps similar to Fig. 15 but fot/¢,5) =  Fig. 18. (Color online) Contour maps similar to Fig. 15 but for/, 6) =
(0.3, ~ 0.08), a typical case of category (B4 (type-1l) < Eq]. (0.1, ~ 0.08), a typical case of category (H{ < Ear (type-Il)].
/‘i’lt;m (/0.1 550-0835_5%::24 Mixed are ready to coexist i'mix by using diferent parts oh(k),
) ) T T Ro) | ‘ resulting in a full gap as shown in Fig. 17(c). Because the

leading order id-SC in category (3), the subordinate order
AF is weakened to some extent. This tendency contrasts with
k, that of category (1).
In category (4), the leading order é6SC, and the FS in
War is type-ll. The situation ofi(k) in War and¥q [Fig. 18]

3 2 0 0 1 2 33 o a0 L 2 aa ey T is similar to that of category (2) [Fig. 16]. Therefore, the two
ky ky kx orders tends to exclude each other, and the subordinate AF
Fig. 17. (Color online) Contour maps similar to Fig. 15 but fot/¢,6) =  order is weakened (= 0.08) or removed for high doping rates
(0.1,~ 0.08), a typical case of category (Fd < Ear (type-1)]. in ¥ix as in Fig. 14(b). Consequentlyk) of ¥nix becomes

akin ton(k) of ¥4 as seen in Figs. 18(b) and 18(c). A point
different from category (2) is that the subordinate order (AF)

The resultant stat®nix comes to have both orders and betends to be excluded not completelydtyix. This is probably
comes a fully gapped state, as shown in Fig. 15(c). because the nesting condition to be satisfied for the AF order

In category (2) [e.g..t(/t,6) = (-0.3,0.08)], because the s |ess strict than the condition foFSC.
leading order is AF, the type-Il AF order arisesix. In The above aspect of interplay between the AF df8iC
this case, the loci of FSs M ar are in the nodal directions grders is more clearly revealed ¥t dependence dPy and
as shown in Fig. 16(a); a scattering vec@rto create the m_ |n the following, we focus on the cases ®f= 0.08. We
d-SC order cannot be placed between two antinodals. Assggrt with the type-l regime/t > 0, categories (1) and (3)].
result, thed-SC order does not arise, and the resultant statghown in Figs. 19(a) i/t dependence of the energyfdi-
Pmix remains the pure AF state [Fig. 16(c)]. Namely, the ence between the two pure statel [Eq. (31)]. As J/t in-
SC order is excluded. The mechanisms in categories (1) aﬁﬁéasesAE/t becomes negative dg/t (~ 0.2 fort’/t = 0.1,
(2) are basically the same as those for the strongly correlatedp 55 for t’/t = 0.2), where the stable state switches from
Hubbard modet® Comparing with Ref. 25 (See Tables | andaF to d-SC. Shown in Fig. 19(b) i8/t dependence d?q and
I), we notice that the independencetf andt7C is crucial msimultaneously measured usifig,. As J/t increases from
for this exclusivity. zero, bothPy andm rapidly increase and exhibit no anomaly

In category (3) [e.g.,t(/t,6) = (0.1,0.08)], thed-SC or- nearJ = Jy; some inflection atl/t ~ 0.15 not only for
der necessarily appears, because it is the leading order. In thig = 0.1 but for 02 probably reflects the rapid variation of
case, the situation of FSs &far and ¥q [Figs. 17(a) and the states. Note that the subordinate order never vanishes both
17(b)] is similar to category (1). Therefore, the two ordersor J < J, (Pg) andJ > Jo (M). Thus, in the type-I regime,

9
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Fig. 19. (Color online) (a) The energy fierence between the two pure
states [Eq. (31)] and (b) the order parameters calculated Y4jpgare plot-
ted as functions o/t for typical values ot’/t in the type-I AF regime. As
guides, the points wher&E/t crosses zeroJj/t) are indicated by the gray
pentagons and open triangles fgit = 0.1 and 02, respectively. The regimes

of J < Jp andJ > Jp belong to categories (1) and (3), respectively, as shown 0.35
by arrows for eaclt /t.
031
0.25¢
. 0.2
the two orders tend to coexist.
In Fig. 20,AE [in (a)], Pq andm{[in (b)] are similarly shown = 0.15 |
for the type-1l regimet(/t < 0). In contrast with the type-I
cases, the behavior of bofy andm anomalously changes 0.1
nearJ = Jo. ForJ < Jy [category (2)], the subordinat
SC order is completely suppressed by the leading AF order. 0.05
For J = Jo, [category (4)] the leading-SC order suddenly
increases and the subordinate AF order drops deat. In 0

this regime, substantial magnituderafis preserved inVag.
Anyway, in the type-Il regime, the two orders tend to exclude
each other.

J/t

Fig. 20. (Color online) The same quantities as in Fig. 19 are plotted but for
the values of’ /t in the type-1l AF regimet’/t = —0.1 and-0.3. The regimes
of J < Jp andJ > Jp belong to categories (2) and (4), respectively.

Fig. 21. Phase diagram of AF andtSC orders int’-6 space constructed
F using Ymix for J/t = 0.3. The AF order exists under the bold red curve

As a summary, we ConStrUCtté}é phase .dlagram of A (guide line), and tha-SC order appears in the area between the two bold
an_d d-SC orders forJ/t = 0.3 using the_‘ mixed Stat_E’miX blue curves. Solid (open) symbols indicate the boundary points determined
(Fig. 21). Compared to the corresponding phase diagram @fing the systems df = 12 (10). In the whole area, all states are stable
the Hubbardtt’-U) model forU/t = 12 (Fig. 27 in Ref. 16), against PS.

the aspect of AF is quite similar, but the aspecat<8C is dif-
ferent in that its area greatly expands from a part of type-Ii
area to a large range of type-l area. And that dh®C or- PS does not occur. The correspondence is not simple. This is
der coexists with the AF order even in the type-ll area. Anpossibly because the three-site (pair-hopping)Hnerms are
other characteristic point is that there is no area where a stalisregarded in the model. Anyway, in the context of cuprates,
is unstable toward PS. The behavioryaf > 0 in Wix (cf.  the main problem remains—why the robust AF order survives
Sect. 3.2) coincides with previous resifts’? up to high doping rates in theory.

When we consider the correspondence with the Hubbard
model withU/t = 12, the valuel/t = 0.3 seems too large in
that thed-SC order excessively appears, but too small in that

10
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5. Summary

As an extension of previous work for the Hubbard
modell® we studied band-renormalizatioffects (BRE) on
the interplay between AF artdSC orders in thé-t’-J model, -0.35
which is expected to more favor tkieSC order than the Hub-
bard model. To reliably treat strong correlation of thé
model, a VMC method was used. We mainly discussed the
case ofJ/t = 0.3 realistic values for cuprate SC. We summa- -0.4
rize the main results below.

() BR modifies the properties al-SC only slightly but 2045
greatly stabilizes the AF state, especially, for large values
of |t’/t| (Table Ill). Consequently, th&-6 phase diagram is -0.45
largely modified; the AF order prevails in almost whole un-
derdoped range (Fig. 21), similarly to the Hubbard case. 2 05

(ii) The metallic AF order fors > 0 in WaF is classified
into two types according t6 > t/ (type-l) ort’ <t/ (type- 0504030501 0 0170203 0405
I), wheret] /t (~ 0) is a Lifshitz transition point (Fig. 10).
As t’/t decreases, the loci of the pocket Fermi surface switch p
att’ =t/ from antinodal - (r,0)] to the nodal directions Fig. A-1. (Color online)ty/t (parameter for determiningkjocc) depen-
[~ (n/2,7/2)]. This distinction of AF type plays a crucial role dence of total energy per site for the AF state is shown fqr various values
for coexistence@xclusivity of the AF andi-SC orders inPpy,. O & Mede! parametaf/t and two doping rates. The system size it = 12.

. . The variational parameters except tgst are optimized for each model pa-

The two orders tend to coexist (exclude each other) in thgmeter set. The ranges ipfit that give the minima of/t are indicated by
area of type-I (Il) AF for the same reason as in the Hubbarlied (for Type-I AF) and empty (for Type-Il AF) arrows for eash
model® in short, compatibility of the electronic states.

(i) In contrast with the Hubbard model witbl/t = 12,
the pured-SC state becomes more stable than the pure AFSC order only slightly. Inhomogeniety allows static short-
state in the underdoped regime £ 0.16) for small values range AF orders. We will address such subjects elsewfiere.
of |t'/t|, namely,d-SC becomes the leading order. As a result,
it is convenient for discussing coexistef@elusivity that the Acknowledgments
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(iv) For J/t = 0.3, any state considered here is stable

against PS (Fig. 11), in contrast with for the Hubbard modéppendix A:  Optimization of Occupied k-Points {k}occ
with U/t = 12, where states with the AF order is unstable in Normal, AF, and Mixed States

toward PS neat’/t = 0. However, from analysis of energy | this Appendix, we describe the details of how we ac-
components, both AF andtSC states probably become Un-tually optimize ¥, War and Wmix for finite systems in this
stable toward PS for larger values bt. study. The operation in band renormalization for finite-size

On the basis of (i) and (iii), we repeat that the problem oéystems is composed of two elemetfisti) Optimization of
coexistencexclusivity largely depends on the value toft  the energy dispersiosy itself, and (i) optimization ofK}occ
and BRE should be properly introduced foft ~ 0.3 (Ta-  (the set of discreté-points occupied by electrons), which
ble I). Regarding (iv), PS in theJ model is a long-standing is ysually obtained by filling thé&-points with electrons in
problem. We will reconsider it in another publication. We conthe order of smalk, optimized in (i) These two elements
centrated on the interplay between the AF driC orders; it merge in the thermodynamic limit, but it is convenient to treat
is important to study interplay among other low-energy statqfie two elements independently for finite systems for techni-
such as staggered-fiiX"-5®and striped state) cal reasons.

The tendency toward predominant AF long-range orders n optimizing the band parametet /t for finite systems,

has been reported not only for the single-band models dig; hecomes discontinuous as a functiontst/t at specific
cussed above but also for tdep model®%6V) In addition to 0 e 1 . : :
valuest,’/t (i = 1, 2,---), owing to the discretd-points.

this predominant AF, some results are inconsistent with the

behavior of cuprates: For instance, except for the multilayN@mely;{Kjocc Switches from one to anothertft/t. Further-

ered system® the AF andd-SC long-range orders do not more, ex sometimes becomes almost constant in the ranges

: . . ; e continyit ) @ ’
coexist and the AF states are always insulating. These poiff§lWeen two discontinuities, safff <t, <tP Asare

suggest that the uniform models are possibly fhiient to sult, it becomes incon\./eni'ent to apply ordinary optimization
describe cuprate SCs. One possibility for reconciling the irfo°!S based on the derivative af, such as the quasi-Newton
consistency with experiments is that some disorders such B§thod and the stochastic reconfiguration method.

the impurity potential of carrier dopants, which is inherent in_ 10 0vercome this diiculty, we follow the next prescrip-

cuprates, destabilize the long-range AF order hifgca the tion in this study. 'F” thinrocess.of_ (if), we generigoce
independently o&2" or t,"/t and fix it at a certain configu-

—= -0.35
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ration. ThenE/t becomes continuous as a function of every
variational parameter, and the ordinary optimization tools be- AF J/t=0.3 L=12

come applicable. Comparirig/t thus optimized for a certain 4 03 5=0.083}7%‘/rv,,,,,,,»ekfﬁ%v\v
{k}occ With those optimized for othgk}oce, We can determine Er v

the optimized energy and wave function. In this process, it is 4 02

not realistic that one checks all possikite,.. one by one, be- :m JUEDNEDE
cause the number ¢k}, grows exponentially as the system- 0.1 o

size increases. For the present case, we found that almost all
optimized{k}qcc for small L are included in those generated

7
W
$
4
[
|
¢

by e up to the diagonal hopping. Therefore, we consider only E;
{K}occ geNnerated by 0.1
&) = 2t (cosk, + cosky) - 4ty cosk,cosky, (A1) 02 é’ —o—
in a proper range ofy/t, instead ofel” in Eq. (17) or 0 g e
EAF = U/2- m. Here,tp/t is a kind of varia- -04-0.3-02 'O-Iﬁt 0.10203 04

tional parameter that optimizdk}..c and is independent of
sﬁ":. Thereby, the number dk}oc. to be checked is greatly Fig. B-1. (Color online)t’/t dependence of optimized band parameters in
reduced. In Fig. AL, we show the,/t dependence of varia- WaF. The energy for.a fixed /t be_co_mes constant in certajn rangespohs
tional energy per site for the AF state (: 12), where all the explained in Appendix A; the optimized rangetgfis shown in green.
residual variational parameters includ'rtjﬁ/t are optimized.
In the range ot,/t corresponding to a certaifk}oce, E/t is A . . o
constant. The optimizetk}oc is determined by finding the (= (Kloco) determined using the optimizeg o

On the other hand far/t < 0O, in Fig. B1, the optimized

range with the lowesE/t. Shown in this figure are the data , ¢
for 5 ~ 0.03 and 008, and the model parametéft = —0.4 range ofty/t is switched to a dierent narrow one~ -0.14),

— +0.3 for eachs. We find fors = 0.083 that the optimized WNhereas the optimized, are smoothly extended from the

same range) for'/t < O (type-Il AF) [t'/t > O (type-l AF)]as AS discussed in Sect. 3.2, some propertieB gf are critically
indicated with an open [a solid] arrow. different between for’/t > 0 (type 1) andt’/t < O (type II).

We apply this scheme to all caseslof= 10 and 12 for Therefore, such properties are considered to be legk Ry
Wy, War, andWoyic. In Some cases, however, it was found tha®r FS and not by:* itself. This predominance dkjocc over
the true optimizedk}occ is Not generated within the abovesfF can be seen in energy reduction. In contrast to the case in
scheme, especially, for considerably lafggt| ands. In such ~ Fig- B-1, the optimized, in Fig. 13(b) in Ref 16 are switched
cases, we search within several plausifilic on the basis 0 different values fot’/t < 0. This is becausg, are adjusted
of the optimized data for small. The above scheme, if the SO as to satisfyk}$. = (k)& Namely, the optimization of
correct{k}occ is Obtained, is being an optimization in a wider{k}occ takes priority over that of" in energy minimization.
parameter range in the sense thaiand {k}q. are indepen- Thus, we can conclude that the reductioiiEjz and some rel-
dently optimized; actually, a parametgyt is added. How- evant properties are primarily caused by FS renormalization,
ever, it remains within the finite-size correction, because trand not by the band foraf" itself.
two elements merge fdr — oo.
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