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Energy band for single wall carbon nanotubes with spin–orbit interaction is calculated using non-
orthogonal tight-binding method. A Bloch function with spin degree of freedom is introduced to adapt
the screw symmetry of nanotubes. The energy gap opened by spin–orbit interaction for armchair
nanotubes, and the energy band splitting for chiral and zigzag nanotubes are evaluated quantitatively.
Spin polarization direction for each split band is shown to be parallel to the nanotube axis. The energy
gap and the energy splitting depend on the diameter and chirality in an energy scale of sub-milli-electron
volt. An effective model for reproducing the low energy band structure shows that the two mechanism of
the band modification, shift of the energy band in two dimensional reciprocal lattice space, and, effective
Zeeman energy shift, are relevant. The effective model explains well the energy gap and splitting for
more than 300 nanotubes within the diameter between 0.7 to 2.5 nm.
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1. Introduction

Carbon nanotubes are new candidates for molecular
nanoconductors.1) Because of an unique electronic property,
being either metallic or semiconducting depending on their
cylindrical geometry,2–7) nanotubes as charge conductors
have been studied extensively. Spin properties, on the other
hand, have also been investigated with both scientific and
engineering interests. Spin-dependent current injected from
ferro-magnetic lead demonstrates that spin scattering length
is longer, at least, than the nanotube length which is typically
sub-micron.8–18) Moreover, spin states in carbon nanotube
quantum dot seems to be independent from the orbital as
shown the four-electron shell structure.19–28) These experi-
ments seem to be consistent with an expectation of few spin
scattering events in carbon materials, because of relatively
small spin–orbit interaction in a carbon atom.

Since the spin–orbit splitting of a carbon atom has been
expected to be a few milli-electron volt,29–33) the effect of
spin–orbit interaction in carbon nanotubes might appear at
low temperatures. In the recent experiment, small energy
splitting has been observed by transport measurement, and
it is considered that the spin–orbit interaction is relevant to
the splitting.34) Using the perturbative approach, several
groups30,32) have shown that an energy gap opens for the
energy bands which cross at the Fermi energy, and that the
energy bands split for the other energy bands by the spin–
orbit interaction. Numerical tight-binding calculation35) has
shown that the spin–orbit interaction lifts the spin degeneracy
of energy bands for chiral nanotubes due to the lack of
inversion symmetry, while the spin degeneracy survives for
achiral nanotubes. However, an unrealistic large spin–orbit
coupling parameter has been assumed in the calculation.35)

The previous theories30,32,35,36) can not explain the exper-
imental behaviors, such as asymmetric splitting between
conduction and valence bands34) and chirality dependence of
spin–orbit interaction. In this paper, quantitative and system-

atic calculation of single-particle spectrum including the
spin–orbit interaction for a variety of nanotubes is presented
to understand the low energy excitations in carbon nanotubes.

Screw symmetry of single wall carbon nanotubes enables
to map the nanotube problem to that of the two-dimensional
graphene.37) In this paper, we adopt the screw symmetry in
the non-orthogonal tight-binding model38,39) using 2s and 2p
electrons of carbon atom, to calculate the electronic proper-
ties of carbon nanotubes. By taking into account the cylin-
drical structure of nanotubes, optimization of the structure,
and by using a density-functional theory framework for
transfer and overlap integrals,40) quantitative calculation for
all types of spinless nanotubes has been well establish-
ed.38,39) In the screw symmetry-adapted framework, 2px, 2py,
and 2pz atomic orbitals of tight-binding Bloch function are
defined on the curved surface coordinates of nanotubes.

For the spin problem with spin–orbit interaction, product
of a spinless Bloch function and a spin function is generally
adopted for the basis set for the Hamiltonian, which is
utilized in the perturbative approach.30,32,36) However, the
product can not be used for the symmetry-adapted Bloch
function. It is because that the orbitals in an atom is defined
for each coordinate axis of the atom while the axes for
the spin does not change. Thus only the one-dimensional
periodicity of nanotubes can be used in the numerical tight-
binding calculation35) in which the spin function is defined
in the three-dimensional coordinates, which requires a large
matrix size for the calculation.

In this paper we introduce a symmetry adapted Bloch
function with spin degree of freedom. This Bloch function
allows us to reduce the matrix size up to 16� 16

(2 atoms � 4 orbitals (2s, 2px, 2py, 2pz orbitals) � 2 spin
degree of freedom) for any nanotubes. Then we calculate the
energy band structure numerically for about 300 single wall
carbon nanotubes whose diameter from 0.7 to 2.5 nm. We
will show that the spin–orbit interaction induces a small
energy gap at the Fermi energy for armchair nanotubes,
which does not have any curvature induced energy
gap.3,4,30,41) For chiral and zigzag nanotubes, the spin-�E-mail: izumida@cmpt.phys.tohoku.ac.jp
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degenerate energy bands split into two due to the spin–orbit
interaction. The spin polarization direction for each band is
parallel to the nanotube axis. The splitting shows diameter
and chirality dependences, and is generally asymmetric
between conduction and valence bands. An effective model
for spin–orbit interaction is also derived using second order
perturbation theory at K and K 0 points. Two mechanism, (i)
shift of the energy band in two dimensional reciprocal lattice
space, which has been pointed out in the previous stud-
ies,30,32,36) and (ii) effective Zeeman term given in the
present paper, are relevant. Together with the curvature
induced spin-independent term,30) the diameter and chirality
dependences of energy band are understood qualitatively by
the effective model.

This paper is organized as follows. In §2, a Bloch
condition and tight-binding function are given to calculate
the spin–orbit interaction for tubular materials. In §3, the
energy band calculations for armchair, chiral and zigzag
nanotubes are shown. The diameter dependence of the
energy gap for armchair nanotubes and the fitted function
of the gap are also given. In §4, the diameter and chirality
dependences of energy splitting are shown for chiral and
zigzag nanotubes in diameter 0.7 to 2.5 nm. In §5, an
effective model is introduced to explain the origin of the
diameter and chirality dependences. In §6, comparison with
the experiment and the other theories is given. In §7, the
conclusion of this paper is given.

2. Formulation

A single wall carbon nanotube is defined by a rolled-up
graphene sheet. For the graphene, two carbon atoms in an
unit cell, A and B atoms, can be mapped onto the entire
graphene sheet by the two unit vectors, a1 and a2.42) Structure
of a single wall carbon nanotube is determined by two
integers, (n;m), which define the chiral vector, Ch ¼
na1 þ ma2, in two-dimensional graphene sheet. The unit
vector of nanotube is then defined by the translation vector
T ¼ t1a1 þ t2a2, where t1 ¼ ð2mþ nÞ=dR, t2 ¼ �ð2nþ
mÞ=dR, dR is the greatest common divisor of 2nþ m and
2mþ n. The one-dimensional nanotube unit cell contains
2N ¼ 4ðn2 þ nmþ m2Þ=dR carbon atoms, which are much
larger than two, especially for chiral nanotubes. This means
that a large matrix size is needed for the electronic state
calculation when we consider only one-dimensional perio-
dicity.

When we adopt the screw symmetry, the unit cell consists
of only two carbon atoms. Here let us consider a nanotube
in the XYZ-coordinate system, where the nanotube axis
coincides with the Z axis as shown in Fig. 1. The A (or B)
atom can be mapped onto the entire tube by two screw
operations, Su ðu ¼ 1; 2Þ, which corresponds to the operation
with au on two-dimensional graphene sheet. The two screw
operations are defined as the product of two operations,

Su ¼ T ðTuÞRð�uÞ; ðu ¼ 1; 2Þ; ð2:1Þ

where T ðTuÞ is the translation operator of Tu in the axis
direction, Rð�uÞ is the rotation operator of angle �u in the
circumference direction (see Fig. 1). The components of two
screw operations satisfy the relations, n�1 þ m�2 ¼ 2�,
nT1 þ mT2 ¼ 0 for the circumference direction, t1�1 þ
t2�2 ¼ 0, t1T1 þ t2T2 ¼ T for the axis direction, respective-

ly. Here T ¼
ffiffiffi
3
p
�dt=dR is the length of nanotube unit cell, dt

is the diameter of nanotube.
The spinless, screw-symmetry-adapted, tight-binding

Bloch function is defined as follows,37–39)

jj�ki ¼
1ffiffiffiffiffi
Ns

p
X
l

0
eikzlþi��l j�j�li; ð2:2Þ

where j ¼ 2s, x, y, z is the index for 2s, 2px, 2py, 2pz

orbitals, respectively, � ¼ 1 (�1) denotes A (B) atom in the
two-atom unit cell. k ¼ ðk; �Þ is an one-dimensional wave-
vector with ��=T � k < �=T , for subband indices � ¼
0; . . . ;N � 1 which corresponds to the circumference mo-
mentum. j�j�li is the j-th atomic orbital at the l-th atomic site
rl ¼ ðr cos �l; r sin �l; zlÞ, with r ¼ dt=2, in which dt is the
diameter of nanotube. The summation on l in eq. (2.2) is
taken over the Ns �-atoms, in which Ns is the number of the
two-atom unit cell. The direction of the atomic orbitals is
defined at each atom with the xyz-coordinate system (see
Fig. 1), in which the x axis is chosen in the direction normal
to the cylinder surface, the y axis in the circumference
direction, and the z axis in the nanotube axis direction. Thus,
the � band consists of mainly from px-orbitals (not pz in the
conventional notation) in our coordinates. The atomic orbital
satisfies the relation, T ðzlÞRð�lÞj�j�l¼0i ¼ j�j�li, where the
label l ¼ 0 indicates the atom at the origin ðX;Y ;ZÞ ¼
ðr; 0; 0Þ. The function in eq. (2.2) satisfies the Bloch
condition,

Sujj�ki ¼ e�ikTu�i��u jj�ki: ð2:3Þ

The spin-independent Hamiltonian is given by,

H0 ¼
p2

2me

þ VðrÞ; ð2:4Þ

where p is the momentum operator, me is the mass of an
electron, VðrÞ is the crystal potential. The 8� 8 Hamiltonian
matrix elements and the overlap integral between the Bloch
functions defined by eq. (2.2) are written as,

X
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T2

2

1

y

z

xzl

l

S2
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Θ
Θ

Fig. 1. Two screw operations Su ðu ¼ 1; 2Þ, and the XYZ- and xyz-

coordinates. All carbon atoms are on the cylindrical surface. Su is the

product of operations with axis and circumference components Tu and

�u, respectively. Surface coordinates are denoted by ðx; y; zÞ which are

defined at each atomic position at ðr cos �l; r sin �l; zlÞ. The x axis is chosen

in the direction normal to the cylinder surface, the y axis in the

circumference direction, and the z axis in the nanotube axis direction.

Three-dimensional coordinates are denoted by ðX;Y ; ZÞ.
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h j�kjH0jj0�0k0i ¼
X
l

0
e�ikzl�i��lh�j�ljH0j�j0�0l¼0i�k;k0

� Hsl
0; j�; j0�0�k;k0 ; ð2:5Þ

h j�kjj0�0k0i ¼
X
l

0
e�ikzl�i��lh�j�lj�j0�0l¼0i�k;k0

� Ssl
j�; j0�0�k;k0 : ð2:6Þ

The matrix elements between atomic orbitals,
h�j�ljH0j�j0�0l¼0i and h�j�lj�j0�0l¼0i, have been evaluated by
the ab initio calculation.40) By solving the secular equation,
½Hsl

0 � Esl
0 S

sl�Csl ¼ 0, 8 eigenvalues Esl
0 ðkÞ and 8 eigenvec-

tors Csl are given.
Let us consider the spin–orbit interaction as an additional

term to H0. Relevant contribution of the spin–orbit inter-
action comes from each atomic site. Under the atomic
potential in each site, the spin–orbit interaction of the system
can be expressed by,

Hso ¼
1

2
Vso

X
l

‘l � s: ð2:7Þ

Here ‘l is the angular momentum operator acts on the atomic
orbitals at site l, s is the Pauli spin matrix, and Vso is
the spin–orbit coupling constant. The summation on l in
eq. (2.7) is taken over the 2Ns atoms. In this paper we
consider only the on-site spin–orbit interaction.

If we define the product of the spinless Bloch function and
a spin function,

jj�ski ¼ jj�kijsi ¼
1ffiffiffiffiffi
Ns

p
X
l

0
eikzlþi��l j�j�lijsi; ð2:8Þ

it is clear that eq. (2.8) does not satisfy the Bloch condition,
that is, Sujj�ski 6¼ cjj�ski, where c is a constant factor, and
jsi is an eigenfunction of s � n�, n� is an unit vector of �-
direction in the XYZ coordinate system. Hereafter, let � ¼ Z,
that is, jsi is the eigenfunction of sZ , where sZ is the Z

component of the Pauli matrix. s ¼ 1 (�1) is the spin
index for up (down) state. Even for this choice of the spin
function, eq. (2.8) is not suitable as a symmetry adapted
Bloch function for the presence of spin–orbit interaction.
In fact, the matrix elements of spin–orbit interaction
between the functions of eq. (2.8), hx�skjHsojz� � sk0i ¼
ð1=2ÞsVso�k;k0��;�0�s, have the non-zero matrix elements be-
tween different wave numbers [see Appendix eq. (A·27)],
because of the azimuth-angle dependent factor on
hsjh�x�ljHsoj�z�lij�si ¼ ð1=2Þe�i�lssVso reflecting that the
coordinate system for atomic orbital is rotated by �l from
the fixed coordinate system for the spin function.

In order to avoid this problem, we define the symmetry
adapted tight-binding Bloch function as a linear combination
of the orbital, j�j�lijsli, with the same Bloch phase for the
opposite spin states. The state jsli is a spin-1/2 eigenfunc-
tion defined in the surface coordinates at l, and its
quantization axis should be the same for all l in the sense
of the surface coordinates. In the present problem we use the
following function as jsli,

jsli ¼ Rð�lÞjsi ¼ exp �i
s�l

2

� �
jsi: ð2:9Þ

Note that T ðzlÞ operation doesn’t affect the spin function.
Hereafter we use the following tight-binding function,

jj� ~sskJi ¼
1ffiffiffiffiffi
Ns

p
X
l

0
eikzlþiJ�l j�j�lijsli; ð2:10Þ

where kJ ¼ ðk; JÞ, J ¼ �J þ 1=2 is a half-integer, �J ¼
0; . . . ;N � 1 are subband indices for the presence of spin–
orbit interaction. The symbol tilde on spin index s is
put to emphasize that the spin state of Bloch function is
different from that defined in the XYZ-coordinates, but is the
linear combination of spin states which are defined on the
surface coordinates at each atomic site. In the sense of
angular momentum, J corresponds to total angular momen-
tum for spin up with � and spin down with �þ 1 states.
For the presence of spin–orbit interaction, � is not a good
quantum number. Therefore the index �J is convenient
to use for the subband index in the present problem.
The function (2.10) now satisfies the following Bloch
condition,

Sujj� ~sskJi ¼ e�ikTu�iJ�u jj� ~sskJi: ð2:11Þ

The Bloch condition eq. (2.11) has two phase factors
which come from the rotational boundary and translational
periodic boundary conditions. The rotational boundary
condition is written as, Rð2�Þjj� ~sskJi ¼ �jj� ~sskJi, where
the minus sign reflects that the spin function changes its sign
under the 2� rotation. Therefore, the additional factor
expð�i�u=2Þ appears in eq. (2.11) from the spinless case of
eq. (2.3).

For Hso, we have non-zero atomic matrix elements as
follows,

hsljh�x�ljHsoj�y�lijsli ¼ �
i

2
slVso; ð2:12Þ

hsljh�x�ljHsoj�z�lij�sli ¼
1

2
slVso; ð2:13Þ

hsljh�y�ljHsoj�z�lij�sli ¼ �
i

2
Vso: ð2:14Þ

Here we note that the matrix elements have no azimuth-
angle dependence. Then the corresponding matrix elements
between the Bloch functions of eq. (2.10) are written as,

hx� ~sskJ jHsojy� ~ssk0Ji ¼ �
i

2
~ssVso�kJ ;k0J

� Hso;x� ~ss;y� ~ss�kJ ;k0J ; ð2:15Þ

hx� ~sskJ jHsojz� � ~ssk0Ji ¼
1

2
~ssVso�kJ ;k0J

� Hso;x� ~ss;z��~ss�kJ ;k0J ; ð2:16Þ

hy� ~sskJ jHsojz� � ~ssk0Ji ¼ �
i

2
Vso�kJ ;k0J

� Hso;y� ~ss;z��~ss�kJ ;k0J : ð2:17Þ

Matrix elements of spin-independent Hamiltonian H0 and
overlap integral between the Bloch function (2.10) are
written as,

h j� ~sskJ jH0jj0�0 ~ssk0Ji

¼
X
l

0
expð�ikzl � i�J�lÞ

� exp �i
1� ~ss

2
�l

� �
h�j�ljH0j�j0�0l¼0i�kJ ;k0J

� H0; j� ~ss; j0�0 ~ss�kJ ;k0J ; ð2:18Þ
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h j� ~sskJ jj0�0 ~ssk0Ji

¼
X
l

0
expð�ikzl � i�J�lÞ

� exp �i
1� ~ss

2
�l

� �
h�j�lj�j0�0l¼0i�kJ ;k0J

� Sj� ~ss; j0�0 ~ss�kJ ;k0J : ð2:19Þ
Even though the Hamiltonian H0 itself doesn’t contain a
spin-dependent term, the spin dependent factor expf�i½ð1�
~ssÞ=2��lg appears in the matrix element in eq. (2.18) [also in
eq. (2.19)] because of the Bloch function (2.10). Therefore
we have the same matrix elements between spin ‘‘down’’
state (~ss ¼ �1) of (�J � 1)-th subband and spin ‘‘up’’ state
(~ss ¼ 1) of �J-th subband as follows,

H0; j� ~ss¼�1; j0�0 ~ss¼�1ðk; �J � 1Þ ¼ H0; j� ~ss¼1; j0�0 ~ss¼1ðk; �JÞ: ð2:20Þ

Thus it is important to note that for the absence of spin–orbit
interaction, Vso ¼ 0, the two-fold spin degeneracy occurs
between the �J-th and (�J � 1)-th energy subbands,

E0;~ss¼�1ðk; �J � 1Þ ¼ E0;~ss¼1ðk; �JÞ; ð2:21Þ

which is independent of the degeneracy of energy bands due
to the time-reversal and inversion symmetries.35) When we
use eq. (2.8) for the basis sets of Hamiltonian matrix, for
Vso ¼ 0, the two-fold spin degeneracy occurs in the same
subband, E0;s¼�1ðk; �Þ ¼ E0;s¼1ðk; �Þ.

In the presence of spin–orbit interaction, eigenvalues
E	 ðkJÞ and eigenvectors C	 (	 ¼ 1; . . . ;�) are given by
solving the secular equation, ½H � E	S�C	 ¼ 0, in which,
Hj� ~ss; j0�0 ~ss0 ¼ H0; j� ~ss; j0�0 ~ss0 þ Hso; j� ~ss; j0�0 ~ss0 is the matrix element of
the total Hamiltonian, � ¼

P
j

P
�

P
~ss ¼ 16. As shown in

eqs. (2.15) and (2.16), since px-orbital, which is relevant to �
band, has the matrix elements between py and pz-orbitals (�
band), the spin–orbit interaction induces the �–� hybrid-
ization. It is well known that the curvature of nanotube
induces the �–� hybridization,3,4,30,41) too. We will show
how these two effects appear in energy band structure.

3. Energy Band for Achiral and Chiral Nanotubes

We calculate energy band for achiral and chiral nanotubes
by solving the secular equation. The atomic hopping
and overlap integrals, h�j�ljH0j�j0�0l¼0i and h�j�lj�j0�0l¼0i,
in eqs. (2.18) and (2.19) are taken into account up to
10 bohr 	 5 Å distance. These integrals are estimated from
the ab initio calculation.40) The curvature induced hybrid-
ization is automatically taken into account. Optimization of
the structure38) has also performed so as to minimize the
total energy with inter-atomic potential which is also given
by the ab initio calculation.40)

In Fig. 2, the energy band of ðn;mÞ ¼ ð6; 6Þ armchair
nanotube is shown. Because the low energy properties are the
main interest in this paper, only energy region near the Fermi
level is shown. In the calculation, spin–orbit coupling con-
stant Vso ¼ 6 meV is used, which is estimated by the local
spin density calculation for an isolated carbon atom.31,43)

Because Vso for the nanotube might be different than that of
an isolated atom, calculations for other Vso values have also
been done, as shown later. For comparison, energy band
without spin–orbit interaction is also shown as the dashed
line in the inset of Fig. 2. For the absence of spin–orbit
interaction, the two linear bands cross at the Fermi energy

near kT ¼ 2�=3 (�2�=3). Note that the crossing points are
shifted to the smaller jkj, kT=2� ’ 
ð1=3� 0:0111Þ, be-
cause of the curvature effect.3,30) It has been pointed out that
the armchair nanotubes with small diameter still have the
linear band at the Fermi energy, even the other types of chiral
and zigzag metallic nanotubes have a small energy gap at the
Fermi energy by the curvature effect.3,4,30,41) However, the
robustness of the metallic nature for armchair nanotubes is
broken by the spin–orbit interaction.30,32,35) The present
calculation shows a small gap (’ 0:72 meV) at the Fermi
energy. However, each energy subband still has the two-fold
degeneracy, because the spin–orbit interaction does not
break the time-reversal symmetry, and the armchair nano-
tubes have the inversion symmetry.35) These properties are
consistent with the previous theories.30,32,35) The energy gap
can be understood as the shift of energy crossing point in
two-dimensional k-space,30,32) as also discussed later.

In Fig. 3, energy gap for armchair nanotubes is plotted as
a function of inverse of diameter. The gap as a function of
spin–orbit coupling constant Vso is also shown in the inset,
because Vso might be different than that of an isolated carbon
atom. It is shown that the energy gap is proportional to the
inverse of diameter, and to the spin–orbit coupling constant.
From the calculation, the energy gap for the armchair
nanotubes is estimated as

EðaÞgap ¼ aðaÞ
Vso

dt
; ð3:1Þ
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Fig. 2. Energy band of ð6; 6Þ armchair nanotube. Spin–orbit coupling
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energy. The dashed line in the inset is the energy band calculation for the

absence of spin–orbit interaction.
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where the constant is estimated to be aðaÞ ¼ 0:098 nm. The
energy gap expression for the armchair nanotubes, eq. (3.1),
will be analytically derived in §5, as a combined effect of the
curvature induced �–� hybridization and the spin–orbit
interaction.30,32)

Figure 4 shows the energy band calculation of ð7; 4Þ, ð8; 2Þ
chiral, and ð9; 0Þ zigzag nanotubes. The nanotubes of ð6; 6Þ,
ð7; 4Þ, ð8; 2Þ, and ð9; 0Þ belong in the same 2nþ m ¼ 18

metallic family, in which the diameters of nanotubes are
similar to one another. First let us discuss on the chiral
nanotubes. For the both cases, energy gap opens near the
Fermi energy. The energy gap can be understood by the
spin-independent curvature effect.3,4,30,41) The effect of the
spin–orbit interaction appears as the splitting of the energy
bands35) as shown in the inset of Fig. 4. The arrows indicated
on each energy band in the inset show the spin polarization
direction to the nanotube axis for each band, where right
(left) arrow corresponds to positive (negative) polarization.
The calculated result shows that the spin in each energy band
is almost perfectly polarized (>99%) to the nanotube axis
direction for all k values shown in inset, and the direction is
opposite to each other for the split pair of the energy bands.
The splitting of the conduction band [0.45 meV for ð7; 4Þ
nanotube, 0.18 meV for ð8; 2Þ nanotube] is smaller than that
of the valence band [1.1 meV for ð7; 4Þ nanotube, 1.4 meV
for ð8; 2Þ nanotube]. It is a common feature of spin–orbit

splitting in metallic nanotubes. (More quantitative discus-
sion on the splitting will be given in the next section.) Here
we note that the energy band at �k is the same with that at k,
even the spin polarization direction is opposite to each other.
For ð9; 0Þ zigzag nanotube, the splitting of energy band
caused by the spin–orbit interaction is also seen. However,
each band still have the two-fold degeneracy.35) Since the
two-fold degeneracy is due to the contribution from K and
K 0 points, the spin polarization direction between degenerate
two bands is opposite to each other.

4. Energy Band Splitting of Chiral and Zigzag
Nanotubes

As shown in the previous section, the splitting of energy
bands shows the asymmetric splitting between valence and
conduction bands and the chirality dependence. To inves-
tigate the splitting for many nanotubes, energy splitting at
the top (bottom) of the highest valence (lowest conduction)
band for all nanotubes with diameter between 0.7 to 2.5 nm
is shown as a function of diameter in Fig. 5. The energy
splitting is defined as Eb;split ¼ Eb;" � Eb;# where b ¼ þ (�)
is the index for the conduction (valence) band, and the arrow
(" or #) indicates the spin polarization direction. Eþ;"=#
(E�;"=#) is the energy of bottom of conduction (top of
valence) band with corresponding spin polarization. There
are two energy-gap points in one-dimensional k, one comes
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from the point near the K point and the other from the K 0

point. In this analysis, we select the one-dimensional
Brillouin zone near the K point, by using the analytic
formula that gives ðk; �Þ which is closest to K point for given
ðn;mÞ.44)

The results are classified into three cases: metallic
[modð2nþ m; 3Þ ¼ 0], type-I semiconducting [modð2nþ
m; 3Þ ¼ 1] and type-II semiconducting [modð2nþ
m; 3Þ ¼ 2] nanotubes are separately shown. It is shown that
the absolute value of splitting becomes larger with decreas-
ing diameter. Moreover the chirality dependence for a given
2nþ m ¼ const. family has also been seen. For the metallic
and type-I semiconducting nanotubes, the sign of splitting is
negative for valence band and positive for conduction band.
As the chiral angle becomes larger (closer to the armchair
nanotube), the absolute value of splitting becomes smaller
(larger) for the valence (conduction) band. (The chiral angle
� is defined as the angle between the chiral vector and zigzag
direction.42)) For the type-II case, the opposite behaviors to
metallic and type-I cases are seen: positive (negative)
splitting for the valence (conduction) band, and the absolute
value of splitting becomes larger (smaller) for the valence
(conduction) band as the chiral angle becomes larger. For the
three cases, it is commonly seen that the asymmetry of the
splitting between valence and conduction bands becomes
smaller with increasing the chiral angle.

Here we introduce a fitting function for the diameter and
chirality dependent energy splitting as,

Eð
Þb;split ¼
cð
Þb;1 þ cð
Þb;2 cosð3�Þ

dt
; ð4:1Þ

where an integer 
 is introduced, to indicate the metallic
(
 ¼ 0), type-I (
 ¼ 1) or type-II (
 ¼ �1) nanotubes. The
fitted function for each (n;m) is also plotted in Fig. 5 The
fitted coefficients, cð
Þb;1=2, are shown in the each inset. From
the calculation of the several spin–orbit coupling constant
Vso, the coefficients are plotted as a function of Vso in the
inset. The diameter and chiral angle dependences of the
energy splitting can be reproduced well within 0.06 meV by
eq. (4.1) except for very small diameter (dt < 1:0 nm) of the
semiconducting nanotubes. For the metallic nanotube of
dt > 0:8 nm, or larger diameter semiconducting nanotubes
dt > 1:5 nm, eq. (4.1) reproduces quite well, within 10�2

meV. Because the absolute value of the coefficients cð
Þb;1 for
valence (b ¼ �) and conduction (b ¼ þ) bands are the
almost same each other, the asymmetry of the splitting is
mainly due to the second term of eq. (4.1). Each coefficients
is proportional to Vso as,

cð
Þb;1 ¼ að
Þb;1Vso; and cð
Þb;2 ¼ að
Þb;2Vso: ð4:2Þ

að
Þb;1 and að
Þb;2 are given from the numerical results shown in
Fig. 5, and are summarized in Table I. In order to under-
stand the diameter, chirality and type dependences, we will
discuss the energy splitting by an effective model analysis in
the next section.

5. Effective Model Analysis

To understand the chirality dependent splitting, let us
consider an effective Hamiltonian of � electrons near the
Fermi energy. To derive the effective model, we consider
eq. (2.8) for the basis sets of Hamiltonian matrix, in which

the spin function is defined in the XYZ-coordinates. The
detailed derivation of the effective model will be given in
Appendix.

Perturbation expansion at K and K 0 points has been often
used for low energy analysis of nanotubes and graphene.45)

The effective Hamiltonian of � electrons with spin–orbit
interaction is given by taking the two types of �–�
hybridizations using the perturbation theory. The effective
Hamiltonian for our system is written as the sum of three
terms, Heff

� ¼ Heff
�;0 þ Heff

�;soc þ Heff
�;cv. The first term, Heff

�;0,
is the effective Hamiltonian without both the spin–orbit
interaction and the curvature induced hybridization, and is
written as,

Heff
�;0 ¼ h�vF

0 kc � i�kt

kc þ i�kt 0

� �
; ð5:1Þ

where � ¼ 1 (�1) is the index of K (K 0) point. The first and
second columns of the matrix correspond to � states of A
and B atomic sites (� ¼ 1 and �1), respectively. vF is the
Fermi velocity, kc is the wave number in the circumference
direction, kt is that in the axis direction. Both kc and kt are
measured from K (K 0) point. For the nanotubes, kc ¼
2ð�0 � 
�=3Þ=dt, where �0 is an integer counted from K (K 0)
point.44,46) The term Heff

�;0 gives the well-known Dirac-cone
energy bands in two-dimensional k-space. Then we add the
two �–� hybridization effects, the spin–orbit interaction and
the curvature of nanotubes,30,32) to Heff

�;0. These effects on
� electrons can be taken into account by second order
perturbation framework. After long but simple calculation,
the following additional terms are obtained (see the
derivation of eqs. (A·41) and (A·42) in Appendix),

Heff
�;soc ¼ h�vF

"ð�Þsocs=h�vF ��ksocs

��ksocs "ð�Þsocs=h�vF

� �
; ð5:2Þ

Heff
�;cv ¼ h�vF

0 �ð�kð�Þc,cv � i��kð�Þt,cvÞ
�ð�kð�Þc,cv þ i��kð�Þt,cvÞ 0

 !
;

ð5:3Þ

where the terms

h�vF�ksoc ¼ �1

Vso

dt
; ð5:4Þ

"ð�Þsoc ¼ ��2

Vso

dt
cos 3�; ð5:5Þ

give spin-dependent energy shift, while the term

h�vF�kð�Þc,cv ¼ ��
cos 3�

d2
t

; ð5:6Þ

gives spin-independent energy shift. The term

�kð�Þt,cv ¼ �

sin 3�

d2
t

; ð5:7Þ

Table I. The parameters in eq. (4.2), given by the data shown in Fig. 5.

The unit is nm.

að
Þ�;1 að
Þ�;2 að
Þþ;1 að
Þþ;2

Metallic (
 ¼ 0) �0:095 �0:090 0.096 �0:090

Type-I (
 ¼ 1) �0:087 �0:085 0.105 �0:094

Type-II (
 ¼ �1) 0.087 �0:086 �0:105 �0:093

J. Phys. Soc. Jpn., Vol. 78, No. 7 W. IZUMIDA et al.

074707-6



gives the kt-shift in the nanotube energy band. The
parameters, �1, �2, �, 
, are given analytically in simpler
tight-binding model (see Appendix). The value will be given
by fitting to the numerical calculation, too as below. The
term Heff

�;soc is the result as first order processes of both the
spin–orbit coupling and the curvature induced hybridization,
whereas Heff

�;cv the result as second order processes of the
curvature induced hybridization. Although the off-diagonal
terms in eqs. (5.2) and (5.3) have also been pointed out in
the previous studies,30,32,36) the diagonal term in eq. (5.2) is
derived in this study. Both terms should be considered to
reproduce the diameter, chirality dependences, and asym-
metry of conduction and valence band splitting, as shown

below. The second order contribution of spin–orbit inter-
action is the order of meV and thus can be neglected. In the
presented effective model, the spin index s, denotes two spin
states parallel to the nanotube axis, is a good quantum
number. However, there are also spin-flip processes between
the � and �
 1 energy subbands in the same order of the
perturbation with eq. (5.2). [The explicit expression is given
in eq. (A·53) in Appendix.] However, the spin-flip between
neighbor subbands can also be neglected in the energy band
calculation, because the energy difference between the
subbands is sufficiently large.

By diagonalizing the effective Hamiltonian, Heff
� ¼

Heff
�;0 þ Heff

�;soc þ Heff
�;cv, we get the energy band expression as

Eð
Þs�ð
Þðkt; �
0Þ ¼ "ð�Þsocs
 h�vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�0 � 
�=3Þ

dt
��kð�Þc,cv ��ksocs

� �2

þ ðkt ��kð�Þt,cvÞ2
s

: ð5:8Þ

The first term "ð�Þsocs in eq. (5.8) results from the diagonal
term in eq. (5.2). This term causes the chirality dependent
spin splitting, and also the asymmetric splitting between
conduction and valence bands together with the terms of
the shift of energy crossing point in k-space, �kð�Þc,cv and
�ksocs. If the first term is missed,30,32,36) the splitting
between the conduction and valence bands are the same.
Comparing with eqs. (4.1) and (4.2), we get the following
relation,

að
Þb;1¼ 2b�1; (for 
 ¼ 0; 1); ð5:9Þ

að
Þb;1¼ �2b�1; (for 
 ¼ �1); ð5:10Þ

að
Þb;2¼ 2�2; (for 
 ¼ 0;
1): ð5:11Þ

As shown in eqs. (5.9) and (5.10), the coefficient ab;1 for
type-II semiconducting nanotubes has the opposite sign to
the metallic and type-I cases. This is because that the nearest
cutting line to the energy crossing point for type-II sits on
the opposite side to the metallic and type-I. Note that the
energy crossing point in two dimensional k-space is shifted
to kc > 0 (kc < 0) from K (K 0) point, by the term of
eq. (5.6). Equations (5.9)–(5.11) indicate that the (absolute
value of) coefficients for the valence and conduction bands
are the same, jað
Þþ;1j ¼ ja

ð
Þ
�;1j, að
Þþ;2 ¼ að
Þ�;2. Indeed, for the

metallic nanotubes, the evaluated coefficients shown in
Table I reproduce the above relations. However, for the
type-I and type-II cases, there are small differences, jað
Þþ;1j >
jað
Þ�;1j, a

ð
Þ
þ;2 < að
Þ�;2. Moreover, the coefficients have the small

type dependence, jað
1Þ
�;1 j < ja

ð0Þ
�;1j, ja

ð0Þ
þ;1j < ja

ð
1Þ
þ;1 j, að0Þ�;2 <

að
Þ�;2, and að
1Þ
þ;2 < að0Þþ;2. The small deviation from eqs. (5.9)–

(5.11) for the semiconductor nanotubes reflects that the
energy band deviation from the linear band is relatively large
for larger

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
c þ k2

t

p
. Thus within the effective model of

linear band approximation, the parameters, �1, �2, �, 
, are
determined by fitting from the numerical results of the
metallic nanotubes. We get �1 ¼ 0:048 nm and �2 ¼ �0:045

nm. We also get � ¼ 24 meV�nm2 and 
 ¼ �0:18 nm from
our numerical results of spin-independent energy gap and
kt-shift for metallic nanotubes.

For the armchair nanotubes, we get the energy gap
expression eq. (3.1) from the effective model with,

aðaÞ ¼ 2j�1j: ð5:12Þ

The value aðaÞ ¼ 0:098 nm estimated in §3 is consistent with
eq. (5.12) with �1 ¼ 0:048 nm estimated from the splitting
data of chiral and zigzag nanotubes.

6. Discussion

In the previous section, we have introduced the effective
Hamiltonian for the � electrons. The Hamiltonian is
constituted by three terms, unperturbated term Heff

�;0, the
spin–orbit term on curved nanotube surface Heff

soc which is
proportional to Vsod

�1
t , and the term of spin-independent

curvature effect Heff
�;cv which is proportional to d�2

t . Even
the effect of spin–orbit interaction itself appears only in the
term Heff

�;soc, considering only Heff
�;soc

32,36) as the additional
term to Heff

�;0 is not sufficient to give the correct energy band
structure, especially for the metallic nanotubes. In fact, the
term Heff

�;cv gives an additional spin-independent shift of the
energy crossing point in two-dimensional k-space. As a
consequence, the small energy gap opens for the chiral and
zigzag metallic nanotubes.3,4,30,41) As shown in eq. (5.8),
Heff
�;cv also lifts the degeneracy of the energy subband

together with the term Heff
�;soc for the lowest subband (�0 ¼ 0)

of metallic (
 ¼ 0) nanotubes. These terms give the micro-
scopic explanation for the energy splitting of metallic
nanotubes, in addition to the group theoretical explanation,
lack of an inversion center for the chiral nanotubes.35)

As shown in eq. (5.2), not only the off-diagonal
term30,32,36) but also the diagonal term appear in Heff

�;soc. The
diagonal term of Heff

soc, an effective Zeeman term (with
opposite effective magnetic field between K and K 0 points),
appears by considering the intermediate states of � bands as
the linear combination of A and B sub-lattice Bloch func-
tions. The diagonal term together with the off-diagonal term
cause the asymmetric energy band splitting between con-
duction and valence bands. The asymmetry becomes larger as
the effective Zeeman term becomes larger with decreasing
the chiral angle. The asymmetry in the recent experiment34)

would be explained by the present model as shown below.
Let us compare the present results with the recent

experimental results.34) For single-electron and single-hole
regions, each corresponds to the bottom of conduction and
the top of valence bands, respectively, the spin–orbit energy
splitting has been reported in the transport measurement.34)

However the large asymmetry of the splitting, 0:37
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0:02 meV for single-electron and 0:21
 0:01 meV for
single-hole, is observed34) which is explained by the present
paper. On the other hand, the previous theories couldn’t
explain the asymmetry.30,32,36) The origin of the asymmetry
is an additional term of the effective Zeeman term [diagonal
term in eq. (5.2)] to the previous theories.30,32,36) Because
the effective Zeeman term has the chiral angle dependence,
the energy splitting has the chirality dependence as shown in
eq. (4.1). This implies that we can evaluate the chiral angle
of nanotubes from the observed energy splitting. By
comparison with the numerical data and experiment,34) the
nanotube for the measurement would be a type-II semi-
conducting nanotube because of the larger splitting for
single-electron level. Then, by fitting the experimental data
with the analytic expression of eqs. (4.1) and (4.2) with the
coefficients in Table I, we get the chiral angle � ¼ 26� 
 1�

for the nanotube in the experiment. We also get the diameter
in the experiment to be dt ¼ 2:0
 0:1 nm, by assuming the
coupling constant Vso ¼ 6 meV. The possible (n;m) values
are ð16; 12Þ which has dt ¼ 1:90 nm, � ¼ 25:3�, and ð17; 13Þ
which has dt ¼ 2:04 nm, � ¼ 25:6�. However, the diameter
in the experiment is estimated to be 5 nm.34) One possible
reason of the difference between theory and experiment
would be due to the spin–orbit coupling constant. The
estimated diameter in the present theory is proportional to
the coupling constant. Therefore the coupling constant for
the nanotubes might be Vso ’ 15 meV, which is 2.5 times
larger than that for an isolated carbon atom. If we adjust dt to
the experiments, which will need the further study.

To understand the spin–orbit interaction is also a key for
application to spintronics device. The additional term, the
diagonal term of eq. (5.2), would give a chirality depend-
ence on not only the energy band structure, but also on time
evolution47,48) and relaxation mechanism36) of the electron
spin in carbon nanotubes. Other types of spin–orbit
interaction, e.g. Rashba type interaction under gate volt-
age32,36,48) might also contribute to the electronic structures.
Further experiments for many types of nanotubes are desired
to be clear the spin–orbit interaction in nanotubes.

7. Conclusion

In this paper, we calculated the low energy band structures
for single wall carbon nanotubes with spin–orbit interaction.
The symmetry adapted Bloch function was introduced to
utilize the screw symmetry of nanotubes. The non-orthog-
onal tight binding calculation has been done numerically for
more than 300 nanotubes within the diameter between 0.7 to
2.5 nm. It has been shown that the spin–orbit interaction
opens the energy gap for armchair nanotubes. The energy
band splitting, which is chirality dependent, has been seen
for chiral and zigzag nanotubes, while armchair nanotube
does not show any splitting for the lowest conduction and
highest valence band. The spin polarization direction for
each splitting band is almost polarized to the nanotube axis.
Especially the splitting is generally asymmetry between
valence and conduction bands. The asymmetry, chirality and
diameter dependences of the splitting have been explained
by the effective Hamiltonian with the diagonal effective
Zeeman term. By comparing with the present theory, the
chiral angle of the nanotube used in the experiment34) has
been estimated.
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Appendix: Effective Hamiltonian for � Electrons

In this appendix, we derive the effective Hamiltonian
given in eqs. (5.1)–(5.3). We use a simpler tight-binding
model for this purpose, in which only the nearest neighbor
hopping integral is considered, and the overlap integral
between the other sites is neglected. Four atomic orbitals on
each site are considered, 2s and 2px, 2py, 2pz orbitals in the
direction of x, y, z-axes, respectively. The xyz-coordinates
are the surface coordinates defined at each atomic site (see
Fig. 1). The unperturbated � electrons, which has two
energy bands crossed at the K and K 0 points, are constructed
from the px orbitals. To derive the effective Hamiltonian,
the spin function defined in the XYZ-coordinate system in
eq. (2.8) is adopted as the basis sets of Hamiltonian matrix.
The effective Hamiltonian derived by the basis sets of
eq. (2.10) is also given for comparison.

The effective Hamiltonian is written as the sum of the
three terms, Heff

� ¼ Heff
�;0 þ Heff

�;soc þ Heff
�;cv. The first term,

Heff
�;0, will be derived by expanding the tight-binding

Hamiltonian for unperturbated � electrons around K (K 0)
point. The second and third terms, Heff

�;soc and Heff
�;cv, will be

derived by the second order perturbation processes of the
�–� hybridizations at K (K 0) point. There are two types of
�–� hybridization, one is the curvature induced hybrid-
ization, and the other is the spin–orbit interaction, whose
Hamiltonians are written as Hcv and Hso, respectively. Then
the effective Hamiltonian, which takes into account these
hybridizations, is derived as,

hx�2s2�2jHeff
ð���Þjx�1s1�1i

¼
X
m

hx�2s2�2jH0jmihmjH0jx�1s1�1i
�Em

; ðA:1Þ

where H0 ¼ Hso þ Hcv, the summation m takes over all
possible intermediate states of � bands. Here the Fermi
energy is taken to be zero. The initial and final states, jx�s�i,
are the 2px tight-binding function at K (K 0) point. � ¼ 1 (�1)
is used as the index of K (K 0) point. (In the present model
we don’t consider the mixing between K and K 0, therefore
we only have diagonal terms for � states.) The effective
Hamiltonian Heff

ð���Þ contains Heff
�;soc in which both Hso and

Hcv contribute as first order, and Heff
�;cv in which Hcv

contributes as second order. The other contributions, second
order of Hso, and both first order of Hso and Hcv for inter-
subband process, are also contained in Heff

ð���Þ. In the
following we will show the matrix elements of eq. (A·1).

A.1 Curvature induced hybridization
First we derive the matrix elements of the curvature

induced hybridization. For larger diameter nanotubes, a px

orbital has the hopping integral between only px orbitals on
the neighbor atoms. However when the diameter becomes
smaller, the hopping between the other orbitals occurs for
the finite curvature on the cylindrical surface. Since the
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curvature induced hybridization itself is spin independent
effect, we consider the spinless tight-binding function
eq. (2.2). Extension to spin problem is simply given by
adding the spin index.

First let us consider the hopping integral between 2px

orbital on a carbon A atom and j orbitals ( j ¼ 2s; x; y; z) on
its three nearest neighbor B atoms. Using the Slater-Koster
type projection for the orbitals, the hopping integral between
j orbital on A atom at position l and j0 orbital on B atom at
position l0, for both j; j0 ¼ x; y; z, is written as,30)

h�jAljH0j�j0Bl0 i

¼ njl � nj0l0H� �
ðLl0l � njlÞðLl0l � nj0l0 Þ

Ll0l � Ll0l

ðH� þ H�Þ; ðA:2Þ

where njl is the unit vector of the direction j at l, and Ll0l is
the vector from l to l0. H� is the hopping integral between �
orbitals, and H� is that between � orbitals.42) Similarly, the
hopping integral between j ¼ x; y; z orbitals on A atom and
2s on B atom is written as,

h�jAljH0j�2sBl0 i ¼
Ll0l � njl
jLl0lj

Hsp; ðA:3Þ

where Hsp is the hopping integral between 2s and �
orbitals.42)

Let an A atom be on ðr; 0; 0Þ with label l ¼ 0, and its
neighbor three B atoms be labeled by l ¼ 1; 2; 3 [see
Fig. A·1(a)]. For the nanotube with chiral angle �, the
vectors are written as, Ll0 ¼ ðrðcos �ABl

� 1Þ; r sin �ABl
;

TABl
Þ, nxl ¼ ðcos �ABl

; sin �ABl
; 0Þ, nyl ¼ ð� sin �ABl

;
cos �ABl

; 0Þ, nzl ¼ ð0; 0; 1Þ, here TABl
¼ ��lða=

ffiffiffi
3
p
Þ sinð’c þ

�lÞ and �ABl
¼ �lða=

ffiffiffi
3
p

rÞ cosð’c þ �lÞ are the axis and angle
components of the B atom on site l, where �l ¼ 1;�1;�1

and �l ¼ 0; �=3;��=3, for l ¼ 1; 2; 3, respectively [see
Fig. A·1(a)]. a ¼ 2:46 Å is the lattice constant of graphene,
’c ¼ �=6� � is the angle between circumference vector and
L10 [see Fig. A·1(b)]. Then the hopping integrals between
atomic orbitals are calculated as,

h�xA0jH0j�2sBli ¼ h�2sA0jH0j�xBli ¼ �
1

2
ffiffiffi
3
p

a

r
cos2ð’c þ �lÞHsp; ðA:4Þ

h�xA0jH0j�yBli ¼ �h�yA0jH0j�xBli

¼ ��l
1ffiffiffi
3
p

a

r
cosð’c þ �lÞ H� �

1

2
ðH� þ H�Þ cos2ð’c þ �lÞ

� �
; ðA:5Þ

h�xA0jHj�zBli ¼ �h�zA0jHj�xBli

¼ �
1

2
ffiffiffi
3
p

a

r
�l sinð’c þ �lÞ cos2ð’c þ �lÞðH� þ H�Þ; ðA:6Þ

h�xA0jHj�xBli ¼ H� �
1

6

a

r

� �2

cos2ð’c þ �lÞ H� �
1

2
ðH� þ H�Þ cos2ð’c þ �lÞ

� �
: ðA:7Þ

Here we considered the lowest order contribution of curvature ða=rÞ in each integral.
Using the above integrals, the hopping integral matrix elements between the tight-binding functions eq. (2.2) are obtained

as,

hxAk0jH0j2sBk0i ¼ h2sAk0jHjxBk0i

¼ �
1

4
ffiffiffi
3
p

a

r
Hsp½ f ðk0Þ � gðk0Þ cos 2’c � hðk0Þ sin 2’c�; ðA:8Þ

hxAk0jH0jyBk0i ¼ �hyAk0jHjxBk0i

¼
1

8
ffiffiffi
3
p

a

r
½ðH� þ H�Þ f ðk0Þ cos 3’c þ ð5H� � 3H�Þðgðk0Þ cos ’c � hðk0Þ sin ’cÞ�; ðA:9Þ

(c)(b)

TAB1

B1

B2

B3

A
TAB2

TAB3

θAB1θAB2
Z(a)

k0y

k0x

μ/r

k

K

K'

Γ ϕc 

A

θ
ϕc z

y

θAB3

B2

B3

B1

x

Fig. A�1. (a) Axis and circumference components of A to its neighbor three B atoms, ðTABl
; �ABl
Þ. (b) Angle between circumference direction and AB1, ’c,

and chiral angle, �. (c) Wave vector for nanotube, ðkc; ktÞ, and that for graphene, ðk0x; k0yÞ.
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hxAk0jH0jzBk0i ¼ �hzAk0jHjxBk0i

¼
1

8
ffiffiffi
3
p

a

r
ðH� þ H�Þ½� f ðk0Þ sin 3’c þ gðk0Þ sin ’c þ hðk0Þ cos ’c�; ðA:10Þ

hxAk0jH0jxBk0i ¼ H� f ðk0Þ �
1

96

a

r

� �2

½ f ðk0Þð5H� � 3H�Þ � 4ðH� � H�Þðgðk0Þ cos 2’c þ hðk0Þ sin 2’cÞ

þ ðH� þ H�Þðgðk0Þ cos 4’c � hðk0Þ sin 4’cÞ�; ðA:11Þ

where

f ðk0Þ ¼ exp i
k0xaffiffiffi

3
p

� �
þ 2 exp �i

k0xa

2
ffiffiffi
3
p

� �
cos

k0ya

2

� �
; ðA:12Þ

gðk0Þ ¼ � exp i
k0xaffiffiffi

3
p

� �
þ exp �i

k0xa

2
ffiffiffi
3
p

� �
cos

k0ya

2

� �
; ðA:13Þ

hðk0Þ ¼
ffiffiffi
3
p

i exp �i
k0xa

2
ffiffiffi
3
p

� �
sin

k0ya

2

� �
: ðA:14Þ

Here we introduced the two dimensional wave vector k0 ¼ ðk0x; k0yÞ, which has the following relations between k ¼ ðk; �Þ as
[see Fig. A·1(c)],

k0x

k0y

� �
¼

cos ’c � sin ’c

sin’c cos ’c

� �
�=r

k

� �
: ðA:15Þ

At K (K 0) point, k0 ¼ 2�=að0;�2=3Þ [k0 ¼ 2�=að0; 2=3Þ] in this calculation, the matrix elements of eqs. (A·8)–(A·11) are
simply written as,

h2s�0�jH0jx��i ¼ �
ffiffiffi
3
p

8

a

r
Hspe

�2i��’c��;��0 ; ðA:16Þ

hy�0�jH0jx��i ¼ ��
ffiffiffi
3
p

16

a

r
ð5H� � 3H�Þei��’c��;��0 ; ðA:17Þ

hz�0�jH0jx��i ¼ i�

ffiffiffi
3
p

16

a

r
ðH� þ H�Þei��’c��;��0 ; ðA:18Þ

hx�0�jH0jx��i ¼ �
1

64

a

r

� �2

½4ðH� � H�Þe�2i��’c � ðH� þ H�Þe4i��’c ���;��0 ; ðA:19Þ

where � ¼ 1 (�1) is the index for A (B) atom. Hereafter we write the Hamiltonian of eqs. (A·16)–(A·19) as Hcv.

A.2 Spin–orbit interaction
Next let us consider the matrix elements of the spin–orbit

interaction. The inner product of the spin–orbit interaction in
eq. (2.7) is expanded as,

‘l � s ¼ ‘l;þs� þ ‘l;�sþ þ ‘l;zsz; ðA:20Þ

where ‘l;
 ¼ ‘l;x 
 i‘l;y [s
 ¼ ðsx 
 isyÞ=2] are the ascent/
descent operators for the angular momentum (Pauli matrix
for spin). The components of these operators are defined
in the xyz-coordinate system at l-th atomic site. The atomic
2p-orbitals are written as the linear combinations of ‘z
eigenfunctions,

j�x�li ¼
1ffiffiffi
2
p ½�jð‘z ¼ 1Þ�li þ jð‘z ¼ �1Þ�li�; ðA:21Þ

j�y�li ¼
iffiffiffi
2
p ½jð‘z ¼ 1Þ�li þ jð‘z ¼ �1Þ�li�; ðA:22Þ

j�z�li ¼ jð‘z ¼ 0Þ�li; ðA:23Þ

therefore, using the relation eq. (2.9), px-orbital at site l with
spin s has the finite matrix elements between the orbitals as
follows,

hsjh�y�ljHsoj�x�lijsi ¼
i

2
sVso; ðA:24Þ

h�sjh�z�ljHsoj�x�lijsi ¼
1

2
ei�lssVso: ðA:25Þ

Here the azimuth-angle dependent factor ei�ls in eq. (A·25)
appears, because the coordinate system for spin function
jsi is rotated from the coordinate system for atomic
orbital by ��l. The corresponding matrix elements be-
tween the tight-binding functions given in eq. (2.8) are
given by,

hy�s0k0jHsojx�ski ¼
i

2
sVso�k;k0�s;s0 ; ðA:26Þ

hz�s0k0jHsojx�ski ¼
1

2
sVso�k;k0��0 ;�þs�s;�s0 : ðA:27Þ

As shown in eq. (A·27), the spin state s (¼ 
1) with
circumference momentum � has the finite matrix element
between the opposite spin state �s with circumference
momentum �þ s.

A.3 Unperturbed � band at K=K 0 points
To obtain the second order perturbation processes

of H0 ¼ Hso þ Hcv to � electrons, energies and eigen-
functions of the intermediate states jmi in eq. (A·1),
that are the unperturbed � bands at K (K 0) point, are
needed. Because the unperturbed � bands are spin degen-
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erate, we consider the spinless states for this subsection.
The Hamiltonian matrix elements between the Bloch
functions eq. (2.2) for � bands is obtained42) as the simi-
lar manner in subsection A.1 of this Appendix. Then, at
K (K 0) the matrix can be separated into three block matrices
as,

Hð1Þ01 0 0

0 Hð�1Þ
01 0

0 0 H11

0
BB@

1
CCA; ðA:28Þ

where

Hð�Þ01 ¼

1
CCCCA

0
BBBB@

j2s;��; �i jð‘x ¼ ���Þ��i

�2s

3ffiffiffi
2
p �ei��’cHsp

3ffiffiffi
2
p �e�i��’cHsp 0

; ðA:29Þ

and

H11 ¼

1
CCA

0
BB@
jð‘x ¼ �ÞA�i jð‘x ¼ ��ÞB�i

0
3

2
e�2i�’c ðH� þ H�Þ

3

2
e2i�’c ðH� þ H�Þ 0

: ðA:30Þ

Here �2s is the energy of 2s orbital. The origin of energy is
taken at energy of 2p orbital. The states indicated on the
columns of each matrix denote the basis states of the matrix.
The state labeled by ‘x is defined as,

jð‘x ¼ 
1Þ��i ¼ �
1ffiffiffi
2
p ðjy��i 
 ijz��iÞ; ðA:31Þ

where the double-signs correspond to one another.
The eigenvalues and corresponding eigenfunctions of Hð�Þ01

are,

E01;� ¼
1

2
�2s þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22s þ 18H2

sp

q� �
; ðA:32Þ

jm01; ���i ¼ ���c�j2s;��; �i þ c��e
�i��’c jð‘x ¼ ���Þ��i;

ðA:33Þ
and, these for H11 are,

E11;� ¼
3

2
�ðH� þ H�Þ; ðA:34Þ

jm11; ��i ¼
1ffiffiffi
2
p

X
�

ð�1Þ
1��
2

1��
2 ei��’c jð‘x ¼ ��Þ��i: ðA:35Þ

Here � ¼ 
1 indicates the two eigenstates for each block
matrix, and, c� is given by,

c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E01;�

E01;þ � E01;�

s
: ðA:36Þ

A.4 Effective Hamiltonian
Using the results of eqs. (A·16)–(A·19), (A·31), (A·33)

and (A·35) with adding the spin degree of freedom, and
eqs. (A·26) and (A·27), the matrix elements between �
states, jx�s�i, and intermediate � states, jm01; ��s�i and
jm11; �s�i, are written for the curvature induced hybrid-
ization as,

hm01; ��
0s0�0jHcvjx�s�i ¼

ffiffiffi
3
p

8

a

r
½
ffiffiffi
2
p

c��ðH� � H�Þ��;��0 þ �c�e�2i��’cHsp��;�0 ���s;s0��;�0 ; ðA:37Þ

hm11; �s
0�0jHcvjx�s�i ¼

ffiffiffi
3
p

16

a

r
ð�1Þ

1��
2

1þ�
2
þ1e2i��’c ð3H� � H�Þ��s;s0��;�0 ; ðA:38Þ

and for the spin–orbit interaction as,

hm01; ��
0s0�0jHsojx�s�i ¼

ic��

2
ffiffiffi
2
p ei��’csð���s;s0 þ �s;�s0��;�0�sÞ��;�0��;�0 ; ðA:39Þ

hm11; �s
0�0jHsojx�s�i ¼

i

4
ð�1Þ

1��
2

1��
2 e�i��’csð����s;s0 þ �s;�s0��;�0�sÞ��;�0 ; ðA:40Þ

where the second terms in eqs. (A·39) and (A·40) denote the
inter-subband mixing with spin flipping. The index � (�0)
belongs to the index � (�0). The other terms in eqs. (A·37)–
(A·40) denote the intra-subband processes, and we omit ��;�0

in these expressions.
Now we derive the effective Hamiltonian. Using

eqs. (A·32), (A·34), and (A·37)–(A·40) for the second order
perturbation expansion in the right hand side of eq. (A·1),
we get the following effective Hamiltonian,

~HHeff
�;soc ¼ ½A1ðcos ’c�̂�y�̂�I � sin’c�̂�x�̂�zÞ

þ A2 sin 3’c�̂�I �̂�z�ŝsZ ; ðA:41Þ
~HHeff
�;cv ¼ ½ðB1 cos 2’c þ B2 cos 4’cÞ�̂�x�̂�I

þ ð�B1 sin 2’c þ B2 sin 4’cÞ�̂�y�̂�z�ŝsI ; ðA:42Þ

for intra-subband processes. Here �̂�, ŝs, �̂� are the Pauli matrix
operators for the states j�i, jsi, j�i, respectively. The suffix I

denotes the unit matrix. The coefficients are written as,

A1 ¼
ðH� � H�Þ�2s

12
ffiffiffi
3
p

H2
sp

Vso

a

r
; ðA:43Þ

A2 ¼ �
H�

2
ffiffiffi
3
p
ðH� þ H�Þ

Vso

a

r
; ðA:44Þ

B1 ¼ �
H� � H�

32

a

r

� �2

; ðA:45Þ

B2 ¼ �
H�ðH� � H�Þ
8ðH� þ H�Þ

a

r

� �2

: ðA:46Þ

The term (A·41) is proportional to both the spin–orbit
interaction and the curvature of nanotube, Vsoða=rÞ, and the
term (A·42) is proportional to the square of curvature, ða=rÞ2.
To derive the term (A·42), we also added the contribution
from eq. (A·19).

By expanding the first term of eq. (A·11) around K and K 0

points, we get the unperturbed effective Hamiltonian for �
electrons as

J. Phys. Soc. Jpn., Vol. 78, No. 7 W. IZUMIDA et al.

074707-11



~HHeff
�;0 ¼ h�vF

0 �ie�i�’c ðkc � i�ktÞ
iei�’c ðkc þ i�ktÞ 0

 !
; ðA:47Þ

The Fermi velocity can be written by the hopping parameter
as, vF ¼ �

ffiffiffi
3
p

aH�=2h� . By performing the unitary transform-
ation, Heff

�;0 ¼ U ~HHeff
�;0U

�1, with the following unitary matrix,

U ¼
iei�’c 0

0 1

� �
; ðA:48Þ

we get the unperturbed Hamiltonian shown in eq. (5.1). Both
the terms (A·41) and (A·42) have the diagonal form for
ŝsZ and �̂�z, therefore these can be written as the matrix form
of �̂�z. After the same unitary transformation with eq. (A·48),
we get the effective Hamiltonian as shown in eqs. (5.2)
and (5.3).

Equation (A·41) is divided into two terms, off-diagonal
term proportional to A1 and diagonal term proportional to
A2. The off-diagonal term has also been pointed out in the
previous calculations,30,32,36) and affects as the spin-depend-
ent shift of the energy crossing point in two dimensional k-
space. On the other hand, the diagonal term in eq. (5.2) is
obtained in this calculation. The diagonal term appears by
considering the intermediate states of � bands as the linear
combination of A and B sub-lattice Bloch functions, as
shown in eqs. (A·33) and (A·35). The diagonal term affects
as an effective Zeeman term with the opposite effective
magnetic field between K and K 0 points.

The parameters in eqs. (5.4)–(5.7) are given by,

�1 ¼ �
aðH� � H�Þ�2s

6
ffiffiffi
3
p

H2
sp

; ðA:49Þ

�2 ¼ �
aH�ffiffiffi

3
p
ðH� þ H�Þ

; ðA:50Þ

� ¼ �
a2ðH� � H�ÞðH� � 3H�Þ

8ðH� þ H�Þ
; ðA:51Þ


 ¼
aðH� � H�ÞðH� þ 5H�Þ

4
ffiffiffi
3
p

H�ðH� þ H�Þ
: ðA:52Þ

If we use the values, H� ¼ �3:033 eV, H� ¼ �5:037 eV,
Hsp ¼ �5:580 eV and �2s ¼ �8:868 eV,4,42) then we get
�1 ¼ 0:014 nm, �2 ¼ �0:054 nm, � ¼ 7:8 meV�nm2, 
 ¼
�0:060 nm. However, these parameters should be estimated
by more precise calculation, e.g., the numerical calculation
shown in this paper, or by experiments.

To derive (A·41), we restricted only the intra-subband
processes in eqs. (A·39) and (A·40). It is important to stress
that there is also inter-subband mixing with spin flipping as
we discussed in eqs. (A·39) and (A·40). The corresponding
effective Hamiltonian is written as,

~HHeff
soc, inter ¼ ½A1ðsin ’c�̂�y�̂�I þ cos ’c�̂�x�̂�zÞ

� A2 cos 3’c�̂�I �̂�z�ið�ŝsþ�̂�� þ ŝs��̂�þÞ; ðA:53Þ
where �̂�
 are the ascent/descent operators for subband
index �. Fortunately, the term can be safely neglected if the
energy difference of two subbands is large enough compared
with A1 and A2. However the term should also be considered
for spin relaxation processes in long time.30,36) We also get
the second order contribution of spin–orbit interaction as,

~HHeff
so2 ¼ �

�2sV
2
so

18Hsp

�̂�z�̂�zðŝsþ�̂�� þ ŝs��̂�þÞ: ðA:54Þ

The corresponding term also appears for the flat graphene
problem.31–33,49) The term can be safely neglect because the
energy scale of the factor is sufficiently small, �2sV

2
so=

18Hsp 	 1 meV. Note that, when we use the symmetry
adapted Bloch function, eq. (2.10), instead of eq. (2.8)
for the basis state, we get the effective Hamiltonian by
changing, ðŝsþ�̂�� þ ŝs��̂�þÞ ! ~̂ss~ssx, ðŝsþ�̂�� � ŝs��̂�þÞ=i! ~̂ss~ssy,
ŝsZ ! ~̂ss~ssz, ŝsI ! ~̂ss~ssI . The relation of eq. (2.20) should also be
considered in the term (5.1) for this case, which will be
reported elsewhere.

1) P. Avouris: Phys. Today 62 (2009) No. 1, 34.

2) J. W. Mintmire, B. I. Dunlap, and C. T. White: Phys. Rev. Lett. 68

(1992) 631.

3) N. Hamada, S. Sawada, and A. Oshiyama: Phys. Rev. Lett. 68 (1992)

1579.

4) R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Phys. Rev.

B 46 (1992) 1804.

5) R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Appl.

Phys. Lett. 60 (1992) 2204.
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